
HDevelop User’s Guide

HALCON 23.11 Progress

HDevelop, the interactive development environment of HALCON, Version 23.11.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 1997-2023 by MVTec Software GmbH, Munich, Germany MVTec Software GmbH

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Microsoft, Windows, Windows 10 (x64 editions), 11, Windows Server 2016, 2019, 2022 Microsoft .NET, Visual C++ and
Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.
OpenGL is a trademark of Silicon Graphics, Inc.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

This manual is a guide to HDevelop, the interactive development environment for the HALCON machine vision
library. It is intended for users who want to use HDevelop as a convenient gateway to the HALCON library or
who want to deploy and test machine vision applications with it. It is not an introduction to the HALCON machine
vision library. A working knowledge of the concepts of HALCON is assumed. Please refer to the Quick Guide to
become acquainted with HALCON. In-depth knowledge of image processing is not required to start working with
HDevelop.

The manual is divided into the following chapters:

• Introducing HDevelop
This chapter explains the basic concepts of HDevelop.

• Getting Started
This chapter explains how to start HDevelop. It provides a quick overview of the graphical user interface,
and shows you how to run the supplied example programs.

• Acquiring Images with HDevelop
This chapter explains the fundamental part of machine vision applications – how to acquire images.

• Programming HDevelop
This chapter explains how to develop applications in HDevelop.

• HDevelop Procedures
This chapter introduces the concepts of breaking a large program into small maintainable and reusable units.

• Graphical User Interface
This chapter explains the graphical user interface of HDevelop and how to interact with it.

• HDevelop Assistants
This chapter describes how to use the machine vision assistants of HDevelop.

• HDevelop Language
This chapter explains the syntax and semantics of the language used in HDevelop expressions.

• Remote Debugging
This chapter explains how remote debugging is supported.

• Code Export
This chapter explains the export of an HDevelop program to C, C++, Visual Basic .NET, or C#.

• Appendix
The appendix contains a glossary, a list of predefined color names, a list for command line usage, and a list
of keyboard shortcuts.

Symbols

The following symbols are used within the manual:

This symbol indicates a tip.

! This symbol indicates an information you should pay attention to.

Contents

1 Introducing HDevelop 11
1.1 Facts About HDevelop . 11
1.2 HDevelop XL . 12
1.3 Terminology & Usage . 12

2 Getting Started 15
2.1 Running HDevelop . 15
2.2 Start Dialog . 16
2.3 User Interface . 16
2.4 Organizing HDevelop’s Workspace . 17
2.5 Running Example Programs . 19

3 Acquiring Images With HDevelop 23
3.1 Reading Images From Files . 23
3.2 Viewing Images . 24
3.3 Image Acquisition Assistant . 25

3.3.1 Acquiring Images From Files or Directories . 25
3.3.2 Acquiring Images Through Image Acquisition Interfaces 27
3.3.3 Modifying the Generated Code . 30

4 Programming With HDevelop 31
4.1 Starting a New Program . 31
4.2 Entering an Operator . 32
4.3 Specifying Parameters . 32
4.4 Getting Help . 33
4.5 Adding Program Lines . 33
4.6 Understanding the Image Display . 34
4.7 Inspecting Variables . 35
4.8 Improving the Threshold Using the Gray Histogram . 35
4.9 Editing Lines . 37
4.10 Executing a Program . 37
4.11 Saving a Program . 38
4.12 Selecting Regions Based on Features . 38
4.13 Opening the Graphics Window . 40
4.14 Looping Over the Results . 40
4.15 Summary . 41

5 HDevelop Procedures 43
5.1 Procedure Types . 43
5.2 File Types . 44

5.2.1 File Tracking . 44
5.2.2 HDevelop Programs . 44
5.2.3 Procedure Files . 44
5.2.4 Libraries . 45

5.3 Procedure Scope . 45
5.4 Procedure Locations . 45
5.5 Procedure Resolution . 46
5.6 Protected Procedures . 47

5.7 Procedure Documentation . 47
5.8 Legacy Procedures . 48
5.9 Just-in-Time Compilation . 48

6 Graphical User Interface 51
6.1 Menu . 52

6.1.1 Menu File . 52
6.1.2 Menu Edit . 54
6.1.3 Menu Execute . 55
6.1.4 Menu Visualization . 56
6.1.5 Menu Procedures . 59
6.1.6 Menu Operators . 60
6.1.7 Menu Suggestions . 61
6.1.8 Menu Assistants . 62
6.1.9 Menu Window . 63
6.1.10 Menu Help . 64

6.2 Tool Bar . 64
6.3 Status Bar . 65
6.4 Canvas Window . 66

6.4.1 Canvas Options . 66
6.4.2 Zooming . 68
6.4.3 Moving . 68
6.4.4 Resizing . 68

6.5 Browse Example Programs Dialog . 69
6.6 Export Program Dialog . 69
6.7 Find/Replace Dialog . 71
6.8 Graphics Window . 74

6.8.1 Tool Bar . 75
6.8.2 Visualization Parameters . 76
6.8.3 Context Menu . 79
6.8.4 3D Plot Mode . 80
6.8.5 Special Keyboard Shortcuts . 81

6.9 Help Window . 82
6.10 OCR Training File Browser . 85

6.10.1 Windows of the Training File Browser . 85
6.10.2 Steps for Working With the OCR Training File Browser 86
6.10.3 Actions Within the Training File Browser . 87

6.11 Operator Window . 90
6.11.1 Operator Name Field . 91
6.11.2 Parameter Display . 91
6.11.3 Control Buttons . 94

6.12 Output Console Window . 94
6.13 Plot Windows . 95

6.13.1 Interacting With Plot Windows . 96
6.13.2 Gray Histogram Window . 98
6.13.3 Feature Histogram Window . 103
6.13.4 Feature Inspection Window . 104
6.13.5 Line Profile Window . 106

6.14 Properties Dialog . 110
6.15 Print Dialog . 110
6.16 Preferences Dialog . 111

6.16.1 User Interface . Program Window . 112
6.16.2 User Interface . Fonts . 113
6.16.3 User Interface . Language . 113
6.16.4 User Interface . Themes . 114
6.16.5 Procedures . Directories . 114
6.16.6 Procedures . External Procedures . 115
6.16.7 Procedures . Manage Procedure Libraries . 116
6.16.8 Procedures . Manage Passwords . 118
6.16.9 Procedures . Procedure Use . 119

6.16.10 Procedures . Unresolved Procedure Calls . 119
6.16.11 General Options . General Options . 120
6.16.12 General Options . Experienced User . 122
6.16.13 Visualization Settings . 124
6.16.14 Runtime Settings . Runtime Settings . 124
6.16.15 Runtime Settings . Override Operator Behavior 125
6.16.16 Telemetry . 126

6.17 Program Window . 126
6.17.1 Program Window Actions . 126
6.17.2 Editing Programs . 127
6.17.3 Program Counter, Insert Cursor, and Breakpoints . 132
6.17.4 Context Menu . 132
6.17.5 Creating Procedures . 134
6.17.6 Editing Procedures . 139
6.17.7 Side Effects of Procedure Changes . 140
6.17.8 Providing Procedure Documentation . 141
6.17.9 Protecting a Procedure . 145
6.17.10 Profiler . 147

6.18 Quick Navigation Window . 151
6.18.1 Invalid Lines . 152
6.18.2 Find Results . 153
6.18.3 Breakpoints . 153
6.18.4 Bookmarks . 154

6.19 ROI Window . 154
6.20 Thread View / Call Stack . 159
6.21 Variable Window . 159

6.21.1 Breakpoints on Variables . 161
6.21.2 Managing Variables . 161
6.21.3 Iconic Variables . 162
6.21.4 Control Variables . 165

6.22 Variable Inspect . 166
6.22.1 Inspecting Tuples . 166
6.22.2 Inspecting Vectors . 168
6.22.3 Inspecting Handles . 169
6.22.4 Inspecting Matrices . 169
6.22.5 Inspecting Poses . 169
6.22.6 Inspecting Image Acquisition Device Handles . 170
6.22.7 Inspecting Functions . 170
6.22.8 Inspecting 3D Object Models . 175

6.23 Zoom Window . 176

7 HDevelop Assistants 179
7.1 Image Acquisition Assistant . 180

7.1.1 Tab Source . 180
7.1.2 Tab Connection . 180
7.1.3 Tab Parameters . 181
7.1.4 Tab Inspect . 182
7.1.5 Tab Code Generation . 182
7.1.6 Menu Bar . 183

7.2 Calibration Assistant . 184
7.2.1 Introducing the Calibration Assistant of HDevelop . 184
7.2.2 How to Calibrate With the Calibration Assistant . 185
7.2.3 Results of the Calibration . 195
7.2.4 Generating Code . 196
7.2.5 Calibration Assistant Reference . 198

7.3 Matching Assistant . 202
7.3.1 Introducing the Matching Assistant of HDevelop . 202
7.3.2 How to Use the Matching Assistant of HDevelop . 203
7.3.3 Matching Assistant Reference . 204

7.4 Measure Assistant . 219

7.4.1 Introducing the Measure Assistant of HDevelop . 219
7.4.2 How to Use the Measure Assistant of HDevelop . 220
7.4.3 Results . 222
7.4.4 Code Generation . 223
7.4.5 Advanced Measuring Tasks . 224
7.4.6 Measure Assistant Reference . 228

7.5 OCR Assistant . 231
7.5.1 Introducing the OCR Assistant of HDevelop . 231
7.5.2 Setup . 232
7.5.3 Segmentation . 234
7.5.4 OCR Classifier . 236
7.5.5 Results . 240
7.5.6 Code Generation . 241
7.5.7 OCR Assistant Reference . 242

8 HDevelop Language 247
8.1 Basic Types of Parameters . 247
8.2 Control Types and Constants . 248
8.3 Variables . 251

8.3.1 Variable Types . 251
8.3.2 Scope of Variables (local or global) . 252

8.4 Operations on Iconic Objects . 253
8.5 Expressions for Input Control Parameters . 253

8.5.1 General Features of Tuple Operations . 253
8.5.2 Assignment . 254
8.5.3 Basic Tuple Operations . 256
8.5.4 Tuple Creation . 257
8.5.5 Type Operations . 259
8.5.6 Basic Arithmetic Operations . 259
8.5.7 Bit Operations . 260
8.5.8 String Operations . 260
8.5.9 Set Operations . 265
8.5.10 Comparison Operations . 265
8.5.11 Elementwise Comparison Operations . 266
8.5.12 Boolean Operations . 267
8.5.13 Trigonometric Functions . 267
8.5.14 Exponential Functions . 268
8.5.15 Numerical Functions . 268
8.5.16 Miscellaneous Functions . 269
8.5.17 Operation Precedence . 270

8.6 Vectors . 270
8.7 Dictionaries . 273
8.8 Reserved Words . 276
8.9 Control Flow Operators . 276
8.10 Error Handling . 282

8.10.1 Tracking the Return Value of Operator Calls . 282
8.10.2 Exception Handling . 283

8.11 Parallel Execution . 283
8.11.1 Starting a Subthread . 283
8.11.2 Waiting for Subthreads to Finish . 285
8.11.3 Execution of Threads in HDevelop . 286
8.11.4 Inspecting Threads . 287
8.11.5 Suspending and Resuming Threads . 288

8.12 Summary of HDevelop Tuple Operations . 288
8.13 HDevelop Error Codes . 292
8.14 Emergency Backup . 297

9 Remote Debugging 299
9.1 Requirements . 299
9.2 Attaching to an External Application . 299

9.3 Debugging . 301
9.4 Handling of Procedures . 301
9.5 Handling of Protected Procedures . 301
9.6 Error Handling . 301
9.7 Threading . 302
9.8 Terminating a Remote Debug Session . 302
9.9 Limitations . 302

10 Code Export 303
10.1 Exporting Library Projects . 303

10.1.1 Requirements . 303
10.1.2 Project Preparation . 304
10.1.3 Exporting a Library Project . 304
10.1.4 Using the Exported Library Project . 305

10.2 Exporting Entire HDevelop Programs . 307
10.2.1 Code Generation for C++ . 307
10.2.2 Code Generation for C# (HALCON/.NET) . 309
10.2.3 Code Generation for Visual Basic .NET (HALCON/.NET) 311
10.2.4 Code Generation for C . 313
10.2.5 General Aspects of Code Generation . 314

A Glossary 319

B Color Names 321

C Command Line Usage 323
C.1 HDevelop . 323
C.2 Hrun . 326

D Keyboard Shortcuts 327
D.1 Canvas Window . 327
D.2 Graphics Window . 327
D.3 Help Window . 328
D.4 HDevelop Main Window . 328
D.5 OCR Training File Browser . 331
D.6 Plot Windows . 332
D.7 Program Window . 332
D.8 Variable Inspect . 333

Index 335

Introducing HDevelop 11

Chapter 1

Introducing HDevelop

HDevelop is a tool box for building machine vision applications. It facilitates rapid prototyping by offering a
highly interactive programming environment for developing and testing machine vision applications. Based on
the HALCON library, it is a versatile machine vision package suitable for product development, research, and
education.

There are four basic ways to develop image analysis applications using HDevelop:

• Rapid prototyping in the interactive environment HDevelop.
You can use HDevelop to find the optimal operators or parameters to solve your image analysis task, and
then build the application using various programming languages, for example, C, C++, C#, or Visual Basic
.NET.

• Development of an application that runs within HDevelop.
Using HDevelop, you can also develop a complete image analysis application and run it within the HDevelop
environment. The example programs supplied with HDevelop can be used as building blocks for your own
applications.

• Execution of HDevelop programs or procedures using HDevEngine.
You can directly execute HDevelop programs or procedures from an application written in C++ or any lan-
guage that can integrate .NET objects using HDevEngine. This is described in detail in the Programmer’s
Guide, part VI on page 137.

• Export of an application as C, C++, Visual Basic .NET, or C# source code.
Finally, you can export an application developed in HDevelop as C, C++, Visual Basic .NET, or C# source
code. This program can then be compiled and linked with the HALCON library so that it runs as a stand-
alone (console) application. Of course, you can also extend the generated code or integrate it into existing
software.

Let’s start with some facts describing the main characteristics of HDevelop.

1.1 Facts About HDevelop

HDevelop actively supports your application development in many ways:

2 With the graphical user interface of HDevelop, operators and iconic objects can be directly selected, ana-
lyzed, and changed within a single environment.

2 HDevelop suggests operators for specific tasks. In addition, a thematically structured operator list helps
you to find an appropriate operator quickly.

2 An integrated online help contains information about each HALCON operator, such as a detailed descrip-
tion of the functionality, typical successor and predecessor operators, complexity of the operator, error
handling, and examples of application. In addition, the online help provides a search facility that allows
you to search the complete documentation of HALCON.

In
tr

od
uc

tio
n

12 Introducing HDevelop

2 HDevelop comprises a program interpreter with edit and debug functions. It supports standard program-
ming features, such as procedures, loops, or conditional statements. Parameters can be changed even while
the program is running.

2 HDevelop immediately displays the results of operations. You can try different operators and/or parame-
ters, and immediately see the effect on the screen. Moreover, you can preview the results of an operator
without changing the program.

2 Several graphical tools allow you to examine iconic and control data online. For example, you can extract
shape and gray value features by simply clicking onto the objects in the graphics window, or inspect the
histogram of an image interactively and apply real-time segmentation to select parameters.

2 Built-in graphical assistants provide interactive interfaces to more complex machine vision tasks. The
assistants can also generate HDevelop code in the current program.

2 Variables with an automatic garbage collection are used to manage iconic objects or control values.

2 HDevelop supports just-in-time compilation of procedures for optimized performance as well as calling
procedures as separate sub-threads.

1.2 HDevelop XL

In addition to the standard HDevelop, there is also a variant called HDevelop XL, which is based on HALCON
XL. The user interface is identical, but underneath HALCON XL is optimized for large images. In the remainder
of this document, when we refer to HDevelop you can substitute HDevelop XL if that is the variant you will be
using.

1.3 Terminology & Usage

HDevelop adheres to well-established conventions and usage patterns regarding its graphical user interface. Most
of the terminology explained here will have become second nature to most users and may most likely be skimmed
over.

Mouse Usage

click A single click with the left mouse button, for example, to mark and select items or to activate buttons. To
select multiple items, hold down the

�� ��Ctrl key and click the desired items. To select many items from a list,
click the first item, hold down the

�� ��Shift key and click the last item. All intermediate items are then also
selected.

double-click Two quick successive clicks with the left mouse button, for example, to open dialogs of selected
items. Double-clicks are mostly shortcuts for single clicks followed by an additional action.

right-click A single click with the right mouse button to access additional functionality of the user interface, for
example, context-sensitive menus. Clicking the right mouse button also ends interactive drawing functions
in HDevelop.

drag Keeping the left mouse button pressed while moving the mouse and finally releasing the mouse button.
Typically used to move items, resize windows, select multiple items at once, for example, program lines, or
to draw shapes.

drag-and-drop HDevelop supports drag-and-drop of image files, dictionaries, 3D object models, DL models, and
HDevelop programs from other applications. You can, for example, drag an HDevelop program from a file
browser and drop it on HDevelop to load it.

middle mouse button With three-button mice, the middle mouse button is used under Linux to paste text from
the clipboard into text fields.

mouse wheel Most recent three-button mice combine the middle mouse button with a scrolling wheel. HDevelop
supports the mouse wheel in many places. The mouse wheel operates the GUI element under the mouse
cursor. Using the mouse wheel you can, for instance, quickly scroll large program listings, select values

1.3 Terminology & Usage 13

from lists or perform continuous zooming of displayed images. In general, windows that provide a scroll
bar can be quickly scrolled with the mouse wheel. Furthermore, the values of spinner boxes (text fields that
expect numerical data) can be decremented and incremented with the mouse wheel.

Keyboard Usage

HDevelop is very keyboard-friendly. Most functions of the graphical user interface that can be operated using the
mouse can be accessed from the keyboard as well. Many of the most important functions are available through
keyboard shortcuts, which are worthwhile memorizing. When programming with HDevelop, keeping both hands
on the keyboard can increase the productivity. Therefore, many navigational tasks like selecting parameter fields
or selecting values from lists can easily be done using just the keyboard. The most common keyboard functions
are listed in the appendix D on page 327.

To make it easier for you to memorize the keyboard shortcuts, many of them are introduced by a common com-
bination to indicate the context. For example, many shortcuts related to the graphics window are introduced by
pressing

�� ��Ctrl+Shift+G followed by another key, for example,
�� ��Ctrl+Shift+G,Del clears the graphics window. Because it

is often easier to keep
�� ��Ctrl+Shift pressed when hitting the second key the alternative

�� ��Ctrl+Shift+G,Ctrl+Shift+Del is also
allowed.

Certain key combinations may conflict with keyboard functions of the operating system or the window manager.
For example, using

�� ��Ctrl+Alt+Cursor Keys in the graphics window pans the displayed image while displaying pixel
information. Under Windows it may also change the screen orientation. See your system documentation on how
to disable or change the conflicting key bindings in this case.

Abbreviations

BP breakpoint

IC insert cursor

GUI graphical user interface

PC program counter

XLD extended line description (see also chapter A on page 319)

In
tr

od
uc

tio
n

14 Introducing HDevelop

Getting Started 15

Chapter 2

Getting Started

2.1 Running HDevelop

In the following it is assumed that HALCON has already been installed as described in the Installation Guide.

Windows

Under Windows, HDevelop is usually started from the Start menu.

You can also start HDevelop from the Windows command prompt or from the Run app (for example, press�� ��Windows logo key + R). This makes it easy to pass optional command line switches:

hdevelop

Linux

Under Linux, HDevelop is started from the shell:

hdevelop &

G
et

tin
g

S
ta

rt
ed

16 Getting Started

2.2 Start Dialog

Figure 2.1: Start dialog.

Quick access to HDevelop programs

Introductory material

Documentation

For a first introduction to HDevelop, try the links listed under “Getting Started”. To close the start dialog without
any further action, press

�� ��Esc . If you have accidentally closed the start dialog, it can be re-opened from HDevelop’s
Help menu.

2.3 User Interface

Figure 2.2: User interface.

When HDevelop is started for the first time it looks similar to figure 2.2. The following windows are available by
default:

2.4 Organizing HDevelop’s Workspace 17

Variable window

Program variables can be watched in this window. It displays all variables of the current procedure and their
current values. Iconic variables are displayed as thumbnails, whereas control variables are displayed as text.
The layout of this window can be switched between horizontal and vertical splitting by double-clicking the
separator. See also Variable Window (page 159).

You can double-click iconic variables to display them in the active graphics window. Double-clicking control
variables opens an inspection window with a formatted list of the current values and statistical data. See also
Inspecting Variables (page 166).

Canvas window with graphics window

The canvas window is a container for graphics windows. It contains one empty graphics window, at first
startup of HDevelop. Graphics windows are used to display iconic data like images, regions, and XLDs, for
more information see also Graphics Window (page 74). Each graphics window provides its own toolbar to
adapt the image display to your needs and to, for example choose between different zoom steps. By default,
the toolbar of graphics windows on the canvas is hidden. To display it, right-click in the canvas window and
activate Show Graphics Window Toolbar.

The canvas window helps you to organize multiple graphics windows. You can arrange and resize the
graphics windows on the canvas freely. For this, right-click in the canvas and activate Show Graphics

Window Frame. Now you can drag the title bar of the graphics window to move it or drag the bottom right
corner to resize the window. You can also detach the graphics windows from the canvas to display them
floating. See also section 6.4 on page 66.

Menu

Tool bar

Program Window

This window displays the current program. It provides syntax highlighting with user-definable colors. The
left column displays the program line numbers. The small black triangle is the insert cursor, which is where
new program lines will be added. In the following, it is referred to as IC. The green arrow is the program
counter which marks the next line to be executed. In the following, the program counter is referred to as PC.
You can also add or remove breakpoints in the current program in this column. These will halt the program
execution at user-defined places so that intermediate results may be examined. See also Program Window
(page 126).

When adding new lines or modifying existing lines, advanced autocompletion (page 129) features speed up
typing and help keeping the program consistent. Program lines can also be modified by double-clicking
them and editing them in the operator window.

Status bar

2.4 Organizing HDevelop’s Workspace

HDevelop offers various possibilities to organize and personalize your workspace. The following paragraphs show
which changes to HDevelop’s layout are possible.

Docking Floating Windows

HDevelop supports docking of windows. Docked windows are bound to the window area of the main window
(page 51). In the default layout, the program window, the graphics or canvas window, and the variable window
are already docked. You can always restore your favorite default layout by clicking Window . Restore Default

Layout Use . Canvas or . Restore Default Layout Use . Docked Graphics Window.

To dock a floating window, do the following:

1. Click and move the title bar of the window.
→ Drop indicators appear, showing possible docking positions: docking to the left, right, upper, or lower

G
et

tin
g

S
ta

rt
ed

18 Getting Started

part. The indicator in the middle tabs the window. The window joins the already docked window as a tab
card.1

When dragging the window and holding down the
�� ��Ctrl key, the drop indicators disappear.

2. Drag the window over the desired drop indicator.

Alternatively, click Dock window in the top right corner of the window. The window docks or tabs at its prior
position.

To undock a window:

• Drag the window at the title bar/tab card and drop it apart from the drop indicators. The window will keep
its current size.

• Or click Undock window in the top right corner of the window or double-click the title bar of the window.
The window will resize to its prior size as floating window.

The position and size of docked windows is restored after closing and reopening HDevelop. There are only a few
exceptions to this rule: HDevelop Assistants (Calibration, Measure...), Call Stack, Find Replace Dialog, Output
Console Preferences, ROI Window, and Inspection Windows (ROI Inspect, Handle Inspect, Variable Inspect...).
Note that the main HDevelop windows, namely the graphics window, the program window, and the variable win-
dow are always restored, even if they have been closed before.

Hiding Windows in the Side Bar

To keep your workspace clear, you can hide docked windows in the sidebar.

Auto-hide: Hide the docked window in one of the 4 side bars (top, left, right, bottom). Click the docked
window’s entry on the side bar to show it again. It will be displayed overlaid (on top of the current layout).

Disable auto-hide: Restore the docked window into the layout.

Changing the Window Size

Docked windows occupy a fixed position within the window area of the main window. To change their size, drag
the border between two docked windows. Double-clicking the border between two docked windows distributes
them equally.

Floating windows can be positioned independently from other windows, even outside the main window. They can
be resized by dragging their window border.

Organizing Graphics Windows on the Canvas

You can use HDevelop’s canvas window to organize multiple graphics windows. To do this, add graphics windows
to the canvas and arrange them as you wish. For more information, please refer to section 6.4 on page 66.

1Note that graphics windows can only be tabbed to other graphics windows. Thus, it is not possible to tab a graphics window to any other
kind of window or the other way round.

2.5 Running Example Programs 19

2.5 Running Example Programs

HALCON comes with many HDevelop example programs from a variety of application areas. These range from
simple programs that demonstrate a single aspect of HALCON or HDevelop to complete machine vision solutions.
As an introduction to HDevelop, we recommend trying some of these programs to quickly get accustomed to the
way HDevelop works.

The example program “Explore the Power of HALCON” demonstrates many different capabilities of HALCON in
one program. It can be started from the start dialog, see figure 2.1 on page 16 (2). Running this program is highly
recommended to get a good overview of the many application areas of HALCON.

“Explore the Power of HALCON” starts up automatically when loaded from the start dialog. After loading it
manually or loading one of the other example programs click or press

�� ��F5 to start it, see figure 2.3 (1).

For more information on how to run programs with a floating canvas or graphics window, see section 6.4.1 on page
66.

Figure 2.3: Explore the power of HALCON.

The example programs have been categorized by application area, industry, method, and operator usage. A special
category “New in version” groups examples by their appearance in specific HALCON releases. Browsing these
categories, you can quickly find example programs that cover image processing problems that you may wish to
solve with HALCON. These programs may serve as a foundation for your own development projects.

To open the example program browser, click File . Browse HDevelop Example Programs...

For more information, see section 6.5 on page 69. Click to run the program.

E
xa

m
pl

es

20 Getting Started

Figure 2.4: The variable and program window after loading the example program.

PC (program counter)

Current procedure

Iconic variables

Control variables

The program lines of the loaded example program are now displayed in the program window. The PC is set to
the first executable line of the program (leading comments are ignored). The variable window is also updated: It
lists the variables that are used in the main procedure, which is initially the current procedure. The variables are
currently uninstantiated, meaning their current value is undefined. This is indicated by the question mark (?). Both
windows are displayed in figure 2.4.

Run Example Program

• Click Execute . Run or click the corresponding button from the tool bar (see figure 2.5).

The program line next to the PC is executed, the PC is moved to the following line and so forth until the
execution stops. There are four reasons for the program execution to stop: 1) the last program line has been
executed, 2) a breakpoint has been reached, 3) the HDevelop instruction stop has been encountered as in
this example, or 4) an error has occurred.

During execution, the graphics window is used for visualization. Changes to the variables are reflected in the
variable window. When the program execution stops, the status bar displays the number of executed lines
and the processing time.

To continue with the program execution, click Execute . Run again until the end of the program is reached.

• Click Reset Program Execution (4) to reset the program to its initial state. (see figure 2.5).

• Using the button Step Over (2) you can execute the program line by line and inspect the immediate effect
of each instruction.

Figure 2.5: The basic execution buttons.

Run continuously

Run step-by-step

Stop

Reset

2.5 Running Example Programs 21

Command Line Switches

HDevelop supports several command line switches to modify its startup behavior. You can also
add the path and file name of an HDevelop program on the command line to load it directly.
This is identical to an invocation of HDevelop without any parameters and a subsequent loading
of the program. The program name may contain environment variables in Windows syntax as in:

hdevelop %HALCONEXAMPLES%/hdevelop/explore_halcon.hdev

Or, you can convert HDevelop programs to other programming languages without opening the graphical user
interface at all. A full list of the supported command line switches is available with the following command:

hdevelop --help

See appendix C.1 on page 323 for a listing of the available switches, and some example uses of the command line.

E
xa

m
pl

es

22 Getting Started

Acquiring Images With HDevelop 23

Chapter 3

Acquiring Images With HDevelop

Image acquisition is crucial for machine vision applications. It will usually be an early if not the first step in your
programming projects. This chapter explores the different ways of image acquisition in HDevelop.

3.1 Reading Images From Files

Especially during prototyping phase you often have a set of sample image files to work from. HDevelop supports
an extensive variety of image formats that can be loaded directly (see read_image in the Reference Manual).

Drag-and-Drop

The easiest way to read an image is to simply drag it from a file browser to the HDevelop window and drop it there.
When the file is dropped, HDevelop opens the dialog Read Image (see figure 3.1).

Figure 3.1: Read Image Dialog.

This dialog displays the full path of the image and automatically proposes a variable name derived from the file
name. This name can be edited, or another iconic variable name from the current program can be selected from
the drop-down list.

Furthermore, a preview of the image and basic image properties are displayed in the dialog (width, height, color
type, and number of channels). If you picked the wrong image, you can select another one from the same directory
by pressing the button next to the file name. This will open a file browser native to the operating system. On
Windows, you may be able to switch to thumbnail view in this dialog. When another image is selected, the dialog
is updated accordingly.

Im
ag

e
A

cq
ui

si
tio

n

24 Acquiring Images With HDevelop

When you click the button OK, the instruction read_image is added to the current program. With the setting of
Insert Position you determine where the instruction will be put: At the IC or the PC. If you changed your
mind about reading the selected image at all, click Cancel.

Drag-and-Drop of Multiple Images

You can also drag multiple images or directories containing multiple images to HDevelop. HDevelop will then
open an image acquisition assistant with the images preselected. See section 3.3 for further information.

Images From Selected Directories

Select File . Read Image... to get the dialog described above.

File Name You can enter the name of an image file into this field. A relative file name is looked up in several
directories in that order:

1. The current working directory (., a single dot) is the directory HDevelop was started from.

2. The subdirectory images of the directory specified by the environment variable HALCONROOT.

3. The directories specified by the environment variable HALCONIMAGES.

4. The directories used in previous invocations of Read Image....

The first matching image file is displayed as a thumbnail preview along with its width, height, color type and
number of channels.

Alternatively, open a file selection dialog by selecting a predefined directory from the File Name combo
box or clicking the browse button. The latter will start browsing in the current working directory, or in the
last used directory. Depending on the operating system you may be able to switch to a thumbnail view in the
file selection dialog.

Variable Name HDevelop suggests a variable name derived from the selected file name. You may adopt or edit
this name. If you want to use a name of an already created iconic variable, this combo box offers you all
known iconic variable names. Simply click the arrow on the right side of the combo box to select a variable
name. Note that the reuse of a variable deletes the old content and replaces it with the new image.

After selecting a file name, click OK to load the image into HDevelop. The operator read_image is inserted at the
specified insert position (IC or PC). The specified iconic variable is updated in the variable window and the image
is displayed in the active graphics window. Clicking Cancel aborts the operation.

By default, an absolute path to the selected image is inserted. You can instruct HDevelop to use relative path names
(see General Options . General Options in the preferences).

3.2 Viewing Images

When images are read as described above, they are automatically displayed in the active graphics window. This
is the default behavior, but the automatic display of images can be suppressed if desired, for example, to speed up
computationally intensive programs.

Initially, new images are fitted into the graphics window at a 1:1 aspect ratio with unused bars on the left and right
side. The aspect ratio will be preserved when resizing the graphics window. Using the tool bar of the graphics
window (page 75) you can easily zoom the image or change the resize mode from the default Keep Aspect

Ratio behavior. Furthermore, you can change the default resize behavior under Edit . Preferences . General
Options. This default resize behavior applies to graphics windows that are opened via menu, Visialization .
Open Graphics Window... or Window . Open Graphics Window.

An iconic view of the loaded image is also displayed in the variable window. When the image is cleared in the
graphics window, the image can always be restored by double-clicking the corresponding icon in the variable
window. See also section Displaying Iconic Variables (page 162).

3.3 Image Acquisition Assistant 25

3.3 Image Acquisition Assistant

The image acquisition assistant is a powerful tool to acquire images from files (including AVI files), directories
or image acquisition devices supported by HALCON through image acquisition interfaces. To use this assistant,
select Assistants . Open New Image Acquisition. The window is displayed in figure 3.2. It features several
tab cards that can be stepped through one after another. Ultimately, the assistant generates HDevelop code that can
be inserted into the current program. Select the entry Help in the menu of the image acquisition assistant to open
its online help.

Figure 3.2: Image acquisition assistant.

The tab card Source determines the acquisition method and the image source. In the default setting images are
acquired from files. This is described in the following section. Alternatively, images are acquired from an image
acquisition device, for example, a camera. This is described in section 3.3.2 on page 27.

3.3.1 Acquiring Images From Files or Directories

You can specify a selection of image files or also drag and drop a complete directory to load images from. Make
sure the radio button Image File(s) is selected in the tab card Source. You can directly enter image names or
the name of a directory into the text field. Multiple image names are separated by a semicolon. Usually, it is more
convenient to use one of the following buttons:

Select File(s) ...

HDevelop opens a file selection dialog in the current working directory, displaying the image files supported by
HALCON. Multiple image files can be selected by holding down the

�� ��Ctrl key while clicking additional image
files. Click Open to confirm the selection. The first selected image is displayed in the active graphics window.

Select Directory ...

HDevelop opens a directory browser. It is not possible to select multiple directories. Confirm your selection by
clicking Open or OK. The first image from the selected directory is displayed in the active graphics window. If the
check box Recursive is ticked, all subdirectories of the specified directory are scanned for images as well.

View Images

You can single-step through the selected images by clicking the Snap button (see figure 3.3). Each time you click
the button, the next image is displayed in the active graphics window. You can also loop through the images by
clicking the button Live. This is especially useful for animations. Both functions are also available from the menu
Calibration.

Im
ag

e
A

cq
ui

si
tio

n

26 Acquiring Images With HDevelop

Figure 3.3: Browsing the selected images.

Connect

Snap (single-step images)

Live (continuous display)

Generate Code

Switch to the tab card Code Generation, and specify a variable name in the text field Image Object. You can
later access the image in the program by this name. If multiple images or a directory were selected in the tab
card Source, the image acquisition assistant will read the images in a loop. In this case the following additional
variable names need to be specified:

Loop Counter: The name of the loop index variable. While looping over the images in the program, this variable
will contain the object number of the current image.

Image Files: The name of the variable that will contain the names of the selected images.

Figure 3.4: Specifying variable names for code generation.

Click Code Preview to inspect the code that would be generated from the currently specified parameters.

Click Insert Code to generate the code and insert it at the position of the IC in the current program.

The following piece of code is an example generated from three selected images. It is a self-contained HDevelop
program that runs without alteration.

* Image Acquisition 01: Code generated by Image Acquisition 01

ImageFiles := []

ImageFiles[0] := 'W:/images/fin1.png'
ImageFiles[1] := 'W:/images/fin2.png'
ImageFiles[2] := 'W:/images/fin3.png'
for Index := 0 to |ImageFiles| - 1 by 1

read_image (Image, ImageFiles[Index])

* Image Acquisition 01: Do something

endfor

3.3.2 Acquiring Images Through Image Acquisition Interfaces 27

3.3.2 Acquiring Images Through Image Acquisition Interfaces

Select Image Acquisition Interface in the Source tab. The drop-down list below the radio button becomes
active. Initially, it lists all image acquisition interfaces supported by HALCON. You can tidy this list by clicking
the button Auto-detect Interfaces . HDevelop will then probe all the image acquisition interfaces and
remove those that do not respond. Probing the interfaces might cause the system to hang due to wrongly installed
drivers or hardware failures. If there are unsaved changes in the current program, HDevelop will display a warning
dialog. You are advised to save the changes before you proceed. You can also ignore the warning and proceed, or
cancel the process. After the interfaces have been probed, you can select the desired image acquisition interface
from the list .

Selecting the entry Help from the menu of the image acquisition assistant will open the online help for the selected
image acquisition interface.

Figure 3.5: Source selection (example).

Auto-detect Interfaces

Interface list

Connect to the Device

Once an image acquisition interface is selected, its connection parameters are detected and updated in the tab card
Connection (see figure 3.6). Here you can specify the device that is connected to the selected image acquisition
interface. If, for example, the interface of a frame grabber board with multiple cameras has been selected as the
source, the actual device can be selected here. The parameters of this tab card are described in general in the
reference section of the operator open_framegrabber; please refer to the HTML page of the selected interface
for detailed information (menu Help).

If the acquisition interface File is selected, two buttons become available to select an image file or an image
directory, respectively. The File interface also supports AVI files, or sequence files (.seq). The latter are special
to HALCON; they contain a list of image file names that will be loaded in succession.

Specify the desired connection parameters and click Connect to establish or update the connection to the actual
device. The connection status can also be toggled in the tool bar (see figure 3.3 on page 26).

You can grab single images with the button Snap, or switch to continuous grabbing mode using the button Live.
Live mode can be stopped by clicking the same button again which is now labeled Stop.

Clicking the button Detect attempts to re-detect valid parameters for the currently selected image acquisition
interface. Usually, this is done automatically, when the interface is selected from the list on the tab card Source.

The button Reset All sets all connection parameters back to their default values.

Im
ag

e
A

cq
ui

si
tio

n

28 Acquiring Images With HDevelop

Figure 3.6: Connection parameters (example).

Set Device Parameters

The tab card Parameters contains a list of parameters specific to the selected device. It becomes available once the
connection to the device has been activated. See figure 3.7 for an example parameter list. The range of parameters
can be limited by category and visibility . Please refer to the HTML page of the selected interface for detailed
information. You can click the help button of the assistant to get to the corresponding page automatically.

Figure 3.7: Device-specific parameters (example).

Range of parameters

Update Image

Refresh

Slider for definded range of values

Depending on the parameter type, different selection methods are enabled. As an example, parameters with a
defined range of values can be specified by dragging a slider or entering the value parametrically. If a value is
changed, a reset button to the right is activated . Some parameters provide a check box which attempts to set the
parameter automatically if clicked.

3.3.2 Acquiring Images Through Image Acquisition Interfaces 29

If Update Image is checked, parameter changes are immediately reflected in the graphics window by acquiring
a new image. The button Refresh updates the list of parameters, which is useful if parameters have side effects.
You can reset all parameters to their default values at once by clicking Reset All.

EasyParams

The tab card EasyParams contains a preselection of the most important camera parameters. These parameters are,
in most cases, enough to rapidly obtain an acceptable image in the Image Acquisition Assistant. Because
the EasyParams rely on the GenICam features of your device, the tab card will only be available for GenICam-
based image acquisition interfaces, and after connecting to a device.

Each one of the EasyParams internally controls multiple GenICam features of the connected device. See figure 3.8
for an example parameter list. Refer to Image Acquisition Interface Reference for detailed information. You can
click the help button of the assistant to get to the corresponding page automatically.

Figure 3.8: EasyParams.

Generate Code

The tab card Code Generation turns the settings made in the other tab cards into executable code. The basic
structure of the code and the corresponding variable names can be specified.

Control Flow

Initialization Only: Generate only code to initialize the image acquisition interface with the parameters
specified in the other tab cards and to close it down properly. Additional code for image acquisition and processing
can be added later.

Acquire Single Image: Also generate code to acquire an image.

Acquire Images in Loop: Also add a loop around the image acquisition code. Further image processing can
be added inside this loop.

The image acquisition interface is addressed by a so-called handle. The variable name of this handle can be
specified in the text field Connection Handle. The variable name of the acquired image(s) can be set in Image

Object.

Click Code Preview to inspect the code. Click Insert Code to generate the code in the program window at the
IC.

Here is a code example:

* Image Acquisition 01: Code generated by Image Acquisition 01

open_framegrabber ('GigEVision', 0, 0, 0, 0, 0, 0, 'default', -1, 'default',
-1, 'false', 'default', 'KickerCam', 0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)

Im
ag

e
A

cq
ui

si
tio

n

../../html/reference/acquisition/acq-overview.html

30 Acquiring Images With HDevelop

Figure 3.9: Code generation.

while (true)

grab_image_async (Image, AcqHandle, -1)

* Image Acquisition 01: Do something

endwhile

close_framegrabber (AcqHandle)

3.3.3 Modifying the Generated Code

After the generated code has been inserted into the program window, HDevelop internally keeps the code linked
to the corresponding assistant. This link is kept until the assistant is quit using the menu entry File . Exit

Assistant. If you close the assistant by using the menu entry File . Close Dialog or the close icon of the
window, the assistant can be restored from the top of the menu Assistants.

You can change the settings inside the assistant and update the generated code accordingly. The code preview will
show you exactly how the generated code lines will be updated. Furthermore, you can delete the generated code
lines, or release them. When code lines are released, the internal link between the assistant and those lines is cut
off. Afterwards, the same assistant can generate additional code at a different place in the current program.

Programming With HDevelop 31

Chapter 4

Programming With HDevelop

This chapter explains how to use HDevelop to develop your own machine vision applications. Preferably, actively
follow the examples in a running instance of HDevelop. In the following, it is assumed that the preferences of
HDevelop are set to the default values. This is always the case after a fresh installation of HALCON. If you are
uncertain about the current settings, you can always start HDevelop with the default settings by invoking it from
the command line in the following way (see also chapter 2 on page 15):

hdevelop -reset_preferences

This chapter deals with a simple example. Given is the image displayed in figure 4.1. The objective is to count the
clips and determine their orientation.

Figure 4.1: Paper clips.

4.1 Starting a New Program

Start HDevelop or, if it is still running, click File . New Program to start a new program. HDevelop will notify
you if there are unsaved changes in the current program. If it does, click Discard to throw away the changes and
start anew.

The first thing to do is read the image and store it in an iconic variable. From chapter 3 on page 23 we already
know that we can simply drag an image to the HDevelop window. We also know that this inserts the operator
read_image into the program. Therefore, we can just as well insert the operator directly.

P
ro

gr
am

m
in

g

32 Programming With HDevelop

4.2 Entering an Operator

Click into the text box of the operator window, type read_image and press
�� ��Return . You can also type any partial

operator name and press
�� ��Return . HDevelop will then open a list of operators matching that partial name. This way,

you can easily select operators without having to type or even know the exact name. Selection is done with the
mouse or using the arrow keys to highlight the desired operator and pressing

�� ��Return . If you selected the wrong
operator by accident, you can reopen the list by clicking the drop-down arrow next to the operator name. When
entering a partial name, operators commencing with that name appear at the top of the list.

Figure 4.2: Matching operators after typing read_ and pressing Return.

4.3 Specifying Parameters

After selecting an operator, its parameters are displayed in the operator window. They are grouped by iconic and
control parameters. The icons next to the parameter names denote the parameter type: Input vs. output (see
figure 4.3). The semantic type is displayed to the right of the parameters. Parameters are specified in the text fields.
The first parameter gets the input focus.

Enter Clip into the text field Image. The image will be stored in this variable. Next, enter ’clip’ into the text
field FileName. You can press

�� ��Tab to go to the next input field. Pressing
�� ��Shift+Tab takes you back to the previous

field. This way you can enter all parameters without using the mouse.

Click OK to add the operator to the current program and execute it. This will do the following:

• An operator call is added as the first line of the current program.

• The IC is advanced, so that additional lines will be added after the inserted line.

• The character * is added to the window title to indicate unsaved changes in the current program. The current
procedure (main) is also marked with * in the program window.

• The program line is executed and the PC is advanced. To be more precise: All the lines from the PC to the
IC are executed which makes a difference when adding program lines in larger programs.

• The image is displayed in the graphics window.

• The status bar is updated, and the execution time of the operator read_image is displayed and the format of
the loaded image is reported.

• The output variable Clip is created and displayed in the variable window.

• The operator window is cleared and ready for the insertion of the next operator.

4.4 Getting Help 33

Figure 4.3: Specifying parameters.

Iconic output parameter

Control input parameter

Semantic type

Data type

File selection dialog

4.4 Getting Help

1. Double-click the first program line in the program window. The operator is displayed in the operator
window for editing.

2. Click Help to open the HDevelop online help window. It will automatically jump to the documentation of
the displayed operator. The reference manual is cross-linked.The navigation at the left part of the window
provides quick access to the documentation. The tab card Contents presents the hierarchical structure of
the documentation. The tab card Operators lists all operators for direct access.

3. Enter any desired substring into Find to quickly find an operator.

The online help window is described in section 6.9 on page 82.

4.5 Adding Program Lines

Threshold

Thresholding is the step to separate the clips from the background, based on the gray value.

1. Enter threshold into the operator window. This is both the full name of an operator and part of other
operator names.

2. Pressing
�� ��Return shows a pre-selected list of matching operators with threshold

3. Press
�� ��Return again to confirm the selected operator and show its parameters.

In figure 4.4 you can see that the input parameter Image is set to Clip automatically. For input variables with
no default value, reasonable suggestions are inferred automatically by collecting previous output variables of the
same type. Therefore, the name of the most recent matching output parameter will be suggested (most recent being
the closest predecessor of the current program line). In this example, only Clip is available.

P
ro

gr
am

m
in

g

34 Programming With HDevelop

Figure 4.4: Parameter suggestions.

• Set MinGray and MaxGray to 0 and 30, respectively. This will select the dark pixels in the image.

• Click Apply. This button executes the operator without adding it to the program. Additionally, it keeps
the current parameters open for editing. This way, different settings can be tried and the result can be seen
immediately. The selected pixels are stored in the output variable Region, which is displayed in the variable
window. The region is an image mask: White pixels are selected while black pixels are not.

• The region is also displayed as an overlay in the graphics window. The selected pixels are displayed in red
by default.

• Click Enter to add the operator to the program window. Contrary to clicking OK, this does not execute the
operator. Note that the variable Region keeps its value but is no longer displayed in the graphics window.
Also, the PC is not advanced, indicating that the second line of the program is yet to be executed.

• Adding program lines with Enter is especially useful if some input parameters use variable names that will
be added to the program at a later time.

Successor

• Click the just inserted program line to select it. You can let HDevelop suggest operators based on the selected
line.

• Open the menu Suggestions . Successors. This menu is filled dynamically to show typical successors
of the currently selected operator. We want to split the selected pixels into contiguous regions.

• Move the mouse pointer over the menu entries. The status bar displays a short description of the highlighted
operator. Any operator selected through this menu is transferred to the operator window.

• Click the operator connection.

• By clicking OK. Two program lines are executed: The threshold operation and the connection operation.
Clicking OK executes from the PC to the IC.

• In the graphics window, the contiguous regions calculated by the operator connection are now displayed
in alternating colors.

4.6 Understanding the Image Display

After having executed the three lines of the program, the graphics window displays three layers of iconic variables:

4.7 Inspecting Variables 35

• the image Clip,

• the region Region,

• and the tuple of regions ConnectedRegions.

The display properties of images and the topmost region can be adjusted from the context menu of the graphics
window. For images, the look-up table (Lut) and the display mode (Paint) can be set. The LUT specifies gray
value mappings. Right-clicking in the graphics window and select some values from the menus Lut and Paint.
Make sure, the menu entry Apply Changes Immediately is checked. Notice how the display of the image
changes while the regions remain unchanged.

The menu entries Colored, Color, Draw, Line Width, and Shape change the display properties of the topmost
region. Set Draw to ‘margin’, Color to ‘cyan’, and Shape to ‘ellipse’. The display of ConnectedRegions (which
is the topmost layer) changes accordingly. The Region is still displayed in filled red.

To set many display properties at once click the menu entry Set Parameters. It opens the settings window
displayed in figure 4.5.

Clicking the button Reset restores the default visualization settings.

Figure 4.5: Changing the display parameters.

You cannot change the display properties of regions (or XLDs) other than the topmost. What you can do is rebuild
the image stack in the graphics window manually by double-clicking iconic variables in the variable window and
changing the properties each time another layer is added. The stack is cleared whenever an image is added that
uses the full domain. To clear the stack (and the graphics window) manually, click , see figure 6.10 on page 74.

4.7 Inspecting Variables

When you move the mouse cursor over the variable ConnectedRegions you see that it contains 98 regions.

Right-click the icon ConnectedRegions and select Clear / Display to display only the connected regions in
the graphics window. Right-click again and select Display Content . Select.... This menu entry opens a
variable inspection window which lists the contents of the variable ConnectedRegions. The selected region of
this inspection window is displayed in the graphics window using the current visualization settings. Set Draw to
‘margin’ and Shape to ‘ellipse’ and select some regions from the list. An example is illustrated in figure 4.6.

For now, close the variable inspection window. The large number of regions is due to the coarse setting of the
bounds of the threshold operator. In the following we will use one of HDevelop’s visual tools to find more
appropriate settings interactively.

4.8 Improving the Threshold Using the Gray Histogram

Click Visualization/Tools . Gray Histogram to open a tool for the inspection of gray value histograms. One
of its uses is to determine threshold bounds visually. Because the graphics window currently displays only regions,

P
ro

gr
am

m
in

g

36 Programming With HDevelop

Figure 4.6: Interactive inspection of an iconic variable containing regions.

Figure 4.7: Determining threshold bounds interactively using the gray histogram.

Threshold

Range Selection and Code Generation

Min and Max Green line

Min and Max Red line

the gray histogram is initially empty. Double-click the Clip icon in the variable window to re-display the original
image and watch its gray histogram appear.

Make sure Range Selection and Code Generation is visible in the histogram window, see figure 4.7. Select
Threshold in the column Operation of the gray histogram window, and click the icon next to Threshold to
visualize the operation. Now, you can try different threshold bounds by altering the values in Min and Max or by
dragging the green and the red line in the histogram area. Any changes to these values are immediately visualized
in the active graphics window. The values 0 and 56 seem suitable for the lower and upper bounds, respectively.

4.9 Editing Lines 37

4.9 Editing Lines

To edit a line in the operator window, double-click it in the program window. If you make changes to the parameters
and click OK or Replace, the original line in the program is updated. You can also edit the program directly in the
program window (see section 6.17.2 on page 127).

Double-click the second line of the program to adjust the threshold operation. Replace the value 30 with 56 and
click Replace. The program line is updated in the program window.

4.10 Executing a Program

The last editing step was just a tiny modification of the program. Often, after editing many lines in your program
with perhaps many changes to the variables, you want to reset your program to its initial state and run it again to
see the changes.

Click Execute . Reset Program Execution to reset the program.

Now, you can select Execute . Run to run the complete program, or click Execute . Step Over repeatedly to
execute the program line by line.

The processing time of the operator or procedure call is indicated in the status bar at the bottom (unless disabled).

Additional Information

Note the following when executing a program via Execute . Run:

• The program line marked by the PC is the first line that is executed. All following program lines are going
to be performed until the end of the current program. After the execution is finished, the main procedure
becomes the current procedure.

• A breakpoint, stop instruction, or runtime error may interrupt the execution of your program; see below.

• If the HDevelop program waits for the user to draw something in the graphics window, a notification message
is printed in the status bar. The program halts until the user finishes the draw operation and confirms this
with a right click.

Further, the following characteristics apply during the execution of operator or procedure calls:

• You can initiate limited activities. For example, if you double-click variables in the variable window
they will be visualized. You can modify parameters for the graphics windows as described in the menu
Visualization. You can even modify the current procedure body.

• All user interaction except Stop is disabled during program execution if the latter was not started in the main
procedure. HDevelop may respond slowly to your actions while the program is running. This is caused by
the fact that HALCON reacts to user input only between calls to operators.

• A variable window update during runtime will only be performed if it has not been suppressed (see sec-
tion 6.16.14 on page 124). In any case, the values of all variables are shown in the variable window after the
termination of the execution.

• While the program is running, the menu items Run, Step Over, Step Into, and Step Out (and the corre-
sponding tool bar buttons) cannot be executed.

• Suggestions in the menu Suggestions are determined for the recently executed operator.

• After executing a program (regardless whether via Run or stepwise via Step Over), HDevelop is available
for further transactions. Any user input that has been made during execution is handled then.

A running HDevelop program stops if one of the following conditions is met:

• You click Execute . Stop (or the corresponding tool bar button).

• The last operator or procedure call in the current program (the main procedure body) is called. This is the
usual way a program terminates. The PC is positioned behind this operator.

P
ro

gr
am

m
in

g

38 Programming With HDevelop

• A breakpoint is reached (see section 6.17 on page 126). In this case, the last operator or procedure call that
will be executed is the one before the breakpoint. In case of a breakpoint on a variable, the program stops
after the program line that modified the corresponding variable (see also section 6.21.1 on page 161).

• A runtime error occurs. An input variable without a value or values outside a valid range are typical reasons.
In this case, the PC remains in the line of the erroneous operator or procedure call.

• A stop instruction is executed. The PC remains on the line containing the stop instruction. Note that stop
instructions inside locked procedures (see section 5.6 on page 47) are obeyed. However, the code of the
locked procedure will only be visible if the correct password is entered in the program window.

• The program waits via the operator wait_seconds. In this case, clicking Run, Step Over, or Step

Forward continues the program immediately.

• HDevelop is closed.

The procedure and procedure call in which the execution of a program was stopped automatically become the
current procedure and procedure call.

4.11 Saving a Program

Perhaps now is a good time to save your program. Select File . Save and specify a target directory and a file
name for your program.

4.12 Selecting Regions Based on Features

Inspecting the variable ConnectedRegions after the changed threshold operation yields a much better result.
Still, a contiguous area at the left edge of the image is returned ; see figure 4.8. To obtain only the regions that
coincide with the clips, we need to further reduce the found regions based on a common criterion. Analogous to
the gray histogram tool, which helps to select regions based on common gray values, HDevelop provides a feature
histogram tool, which helps to select regions based on common properties or features.

Click Visualization/Tools . Feature Histogram to open the tool. Make sure Feature Selection and

Code Generation is visible in the histogram window . The column Feature allows you to select the feature
that the region selection will be based on. The default feature is “area”, which is adequate in this case: The actual
clips are all the same size, thus the area of the regions is a common feature. In the feature histogram the horizontal
axis corresponds to the values of the selected feature. The vertical axis corresponds to the frequency of certain
feature values.

Similar to the gray histogram window, you can visualize the selected regions. The regions whose area falls
between the values Min and Max, which are represented by the green and red vertical lines, respectively. Click the
icon next to the selected feature (area) to enable the visualization.

Specify the parameters in the Input and Output section of the feature histogram window . Drag the green
and red line to see how this affects the selected regions. In the histogram we can see that in order to cover all
the clips, we can safely select regions whose area is between, say, 4100 and the maximum value in the histogram.
When you are satisfied with the selection, click the button Insert Code. The following line (with similar numeric
values) will be added to your program at the position of the IC:

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 4100, 5964)

Run the program, and inspect the output variable SelectedRegions. The regions corresponding to the clips
are now determined correctly. To obtain the orientation and the center of gravity of the clips, add the following
operator calls to the program:

orientation_region (SelectedRegions, Phi)

area_center (SelectedRegions, Area, Row, Column)

4.12 Selecting Regions Based on Features 39

Figure 4.8: Selecting regions with a similar area in the feature histogram.

Input and Output

Click to enable visualization

Feature Selection and Code Generation

Green and red line that affects the selected regions

Contiguous area at the left edge of the image

The operator orientation_region returns a tuple of values: For each region in SelectedRegions a corre-
sponding orientation value in Phi is returned. The operator area_center in the same way returns the area, row
and column of each input region as tuples. Again, run the program and inspect the calculated control variables. You
can inspect multiple control variables in one inspection window. This is especially useful if the control variables
all relate to each other as in this example. In the variable window select all control variables (hold down the

�� ��Ctrl

key), and right-click Inspect (see figure 4.9).

Figure 4.9: Inspecting control variables.

P
ro

gr
am

m
in

g

40 Programming With HDevelop

4.13 Opening the Graphics Window

Up until now, the visualization of iconic results relied on the fact that a graphics window is always opened by
default when HDevelop starts. If you need control over the size and position of graphics windows you can explicitly
open a distinct number of floating graphics windows.

Add the following lines before the first line of your program:

dev_close_window ()

dev_open_window (0, 0, 512, 512, 'black', WindowHandle)

The first line closes a floating graphics window potentially left over from a previous run to ensure a consistent
state at the start of the program. The second line opens a single graphics window that can be referenced by the
output variable WindowHandle. The window handle is a magic value that is also displayed in the title bar of the
corresponding graphics window.

Graphics windows that are opened via operator dev_open_window will be opened as floating windows, displaying
images in Full Stretch mode for maximum backwards compatibility.

Generating Code for the Settings of a Graphics Window

You can use the Insert Code... command to insert the piece of code into the current program that will restore
the current state of the graphics window or parts of it.

1. Prepare the state of the graphics window to use. For more information, see section 6.8 on page 74.

2. In the program window, place the cursor where you want to insert the code.

3. Click Visualization . Insert Code....

4. In the dialog, specify the settings to add:

Iconic objects from the graphics stack

All iconic objects that are currently visible in the active graphics window

Visualization parameters

The draw colors, draw mode, line width, region shape, LUT, and paint mode

Window geometry

The window size and the visible part

5. Click Insert.

4.14 Looping Over the Results

Being an integrated development environment, HDevelop provides features found in other programming languages
as well: Variable assignment, expressions, and control flow. Variable assignment and control flow are implemented
in terms of specific HDevelop operators. These operators can be selected from the menu Operators . Control.
Expressions are implemented in terms of a specific HDevelop language which can be used in input control param-
eters of operator calls.

To iterate over the elements in Phi, we use a for loop which counts from zero (the index of the first element of
a tuple) to the number of elements minus one. The for loop is entered just like a common HALCON operator:
Enter for into the operator window and specify the parameters as in figure 4.10. Note that the closing endfor is
entered automatically if the corresponding check box is ticked. Also note that the IC is placed between the added
lines so that the body of the loop can be entered.

The notation |Phi| - 1 is part of the HDevelop language. This operation calculates the number of elements in
Phi minus one. When inserted in the program window, the operator for is displayed in a different format to make
it more readable.

4.15 Summary 41

Add the following instruction to the program. It is automatically indented in the program window to highlight the
nesting inside the for loop. The backslash at the end of the first line allows the program line to continue at the
next line in the program window for readability. You can either enter the instruction as displayed or in a single
long line without the backslash.

dev_disp_text (deg(Phi[Index]) + ' degrees', 'image', Row[Index], \

Column[Index], 'black', [], [])

The operator dev_disp_text provides a convenient way to output text at specific positions in the activated graph-
ics window. Press

�� ��F1 to get more information about the meaning of the parameters. The notation Phi[Index] is
another operation of the HDevelop language. It provides access to a single value of a tuple. The function deg is
part of the HDevelop language. It converts its argument from radians to degrees. In this example the operation +

performs a string concatenation because the argument ’ degrees’ is a string value. Before the two operands of
+ are concatenated, an automatic type conversion (double to string) of the numeric argument takes place. The
details of the HDevelop language are explained in chapter 8 on page 247.

Please note that the loop around dev_disp_text was chosen to illustrate how to access single elements of a tuple.
In this specific example it is not really required because dev_disp_text is smart enough to directly operate on
tuples. Instead of the loop, you could simply use the following call:

dev_disp_text (deg(Phi) + ' degrees', 'image', Row, Column, 'black', [], [])

4.15 Summary

This is basically the way to create programs in HDevelop. Select an operator, specify its parameters, try different
settings using the button Apply, add a new program line using Enter or OK, and edit it later by double-clicking
it in the program window. Use the interactive tools provided by HDevelop to assist you, for example, to find
appropriate values for the operators.

Figure 4.10: Entering a loop in HDevelop.

P
ro

gr
am

m
in

g

42 Programming With HDevelop

Figure 4.11: Final result of the example program.

HDevelop Procedures 43

Chapter 5

HDevelop Procedures

HDevelop offers a mechanism for the creation and execution of procedures. Procedures are meant to increase the
readability and modularity of HDevelop programs by encapsulating functionality of multiple operator calls in one
or more procedure calls. It also makes it easier to reuse program code in other HDevelop programs by storing
repeatedly used functionality in external procedures.

An HDevelop procedure consists of an interface and a program body. Procedure interfaces resemble the interfaces
of HALCON operators. They contain parameter lists for iconic and control input and output parameters. The
procedure body contains a list of operator and procedure calls. Furthermore, HDevelop provides extensive support
to supplement procedures with structured documentation. The documentation is automatically integrated into the
online help system.

Every HDevelop program is made up of one or more procedures. It always contains the main procedure, which has
a special status inside the program, because it is always the top-most procedure in the calling hierarchy and cannot
be deleted from the program.

HDevelop offers all necessary mechanisms for creating, loading, deleting, copying, modifying, saving, and export-
ing procedures. Once a procedure is created, it can basically be used like an operator: Calls to the procedure can be
added to any program body and be executed with the appropriate calling parameters. Generally, the concept of us-
ing procedures inside HDevelop is an extension to the concept of calling HALCON operators since procedure and
operator interfaces have the same parameter categories, and the same rules apply for passing calling parameters.

5.1 Procedure Types

HDevelop supports different types of procedures. The type is specified when a procedure is created, and determines
the location of the procedure in the file system.

Each program file contains exactly one main procedure and zero to multiple local procedures.

Local procedures are stored inside the HDevelop program and cannot be called from other programs or exter-
nal procedures.

External procedures are stored as separate files, and can be shared between different HDevelop programs.
A modification immediately affects all HDevelop programs using it when reloaded. Each procedure file
contains a single external procedure. The file name determines the name of the procedure. Thus, if the file
name is changed, programs and other procedures using it will have to be adapted.

Libraries contain a collection of (typically related) procedures in a single file. They share the same properties
as a collection of external procedures in a single directory. The idea of creating a library is to keep related
procedures as a unit.

If the type of an existing procedure is changed, the procedure resolution might be affected (see section 5.5 on page
46).

P
ro

ce
du

re
s

44 HDevelop Procedures

5.2 File Types

HDevelop programs, procedures, and libraries are stored in files with different formats and extensions.

5.2.1 File Tracking

When a file is changed outside of HDevelop, the file tracking alerts the change and offers to reload the file. Click
Ignore to abort. To reload the changed files without using the file changes dialog, click Reload All within
the File tabcard. For more information, see section 6.16.12 on page 122.

Figure 5.1: File tracking change dialog.

Reload All

Ignore

5.2.2 HDevelop Programs

.hdev This is the default file format for HDevelop programs. The “main” procedure and all local procedures. It
stores programs in XML format and is suitable for revision control software.

.dev (Legacy) This is the default file format for HDevelop programs in HDevelop versions up to and including
HALCON 9. It is not suitable for managing programs using revision control software. This format is
required if you want to be able to load HDevelop programs in older versions of HDevelop. This format is
now marked as legacy and its use is no longer recommended.

5.2.3 Procedure Files

.hdvp This is the default file format for external procedure files. It stores external procedures in XML format and
is suitable for revision control software. Procedures with the extension .hdvp always override procedures
with the same name but the extension .dvp in the same directory.

.dvp (Legacy) This is the default file format for external procedure files in HDevelop versions up to and including
HALCON 9. It is not suitable for managing external procedures using revision control software. This format
is required if you want to be able to use external procedures in older versions of HDevelop. This format is
now marked as legacy and its use is no longer recommended.

The file name (without the extension) determines the name of the contained external procedure (see also section 5.1
on page 43).

5.2.4 Libraries 45

5.2.4 Libraries

.hdpl This is the file format for procedure libraries. It stores libraries in XML format and is suitable for revision
control software.

5.3 Procedure Scope

The scope of a procedure defines its visibility to other procedures. If a procedure is visible, it can be called and
thus executed. The scope can be either private or public.

In private scope, the procedure is only visible from procedures in the same directory (external procedure) or
the same file (program or library). The scope of local procedures is always private to the current program,
and external procedures can never see them.

In public scope, the procedure is visible to all other procedures.

5.4 Procedure Locations

HDevelop looks for procedures in a set of locations in the order specified in this section. Locations can be either
directories or library files.

1. Import locations

Import locations are specified in the program code using the import statement. Program lines following the
import statement may call procedures from that location.

For example, if you want to call the procedure config.hdvp from the directory
C:/Users/Public/procedures/common, here is how this can be achieved:

...

import C:/Users/Public/procedures/common

config()

...

An import location is valid from its import call to the end of the procedure.

2. Session locations

HDevelop can be started from the command line with a set of locations that are searched for procedures in
the current session only.

Calling

hdevelop -external_proc_path:<path name(s)>

adds the locations given in path name(s) to the list of searched procedure locations. Multiple locations may
be specified by using the system-dependent separator, “;” on Windows systems and “:” on Linux systems.

Subdirectories of the specified locations are searched recursively.

3. Static user-defined locations

Arbitrary locations can be added or removed in the preferences of HDevelop. Just like the standard pro-
cedure path below, each user-defined directory can be enabled or disabled independently. The user-defined
directories and their settings are persistent. They survive a restart of HDevelop. It is good practice to put
commonly used procedures into these locations.

Subdirectories of the specified locations are searched recursively.

P
ro

ce
du

re
s

46 HDevelop Procedures

4. Standard procedure path

By default, HDevelop is set up to look for procedures in a predefined directory which contains several
useful procedures. The standard procedure path is %HALCONROOT%\procedures under Windows and
$HALCONROOT/procedures under Linux. Because many example programs shipped with HALCON rely
on these procedures, the standard procedure path cannot be removed, but it can be disabled to make the
corresponding procedures unavailable.

Subdirectories of the specified location are searched recursively.

5.5 Procedure Resolution

A procedure can only be called if it can be resolved from the point of insertion of the procedure call. Because
duplicate procedure names are allowed in HDevelop, understanding the order of resolution is very important. The
resolution order determines which procedure is used if several procedures of the same name exist. For example,
the imported procedure xyz.hdvp takes priority over the local procedure xyz.hdvp.

Procedures are resolved based on their name only and not on the matching of the signature. If the resolved
procedure has a different signature, such like different number and/or types of parameters, the call will be invalid.

A procedure call looks for a procedure of the given name in the following order:

1. Imported procedures

HDevelop looks for imported procedures (section 5.4). Note that for several import statements that contain
procedures of the same name, the last import call has priority.

2. Context of the calling procedure

If no imported procedure is found, the context of the calling procedure is significant for the procedure
resolution. The context depends on the type of the calling procedure:

• If the calling procedure is a local procedure, it looks for local procedures.

• If the calling procedure is a procedure file, it looks for procedure files in the same directory.

• If the calling procedure is a library procedure, it looks for procedures in the same library.

3. External procedures

HDevelop looks for external procedures (section 5.4) in the following order:

(a) Session locations:

hdevelop -external_proc_path:<path name(s)>

(b) Static user-defined locations

(c) Standard procedure path

The tool tip of a procedure call reveals the location of the resolved procedure.

Resolution Example

As an example, we look at a program with three local procedures. Two procedure directories are defined (disre-
garding the standard procedure path).

+ C:/Users/Public/

|

+--+ example.hdev

| |

| +--- main

| +--- init

| +--- compute_results

|

5.6 Protected Procedures 47

+--+ procedures/project/

| |

| +--- init.hdvp public

| +--- local.hdvp private

| +--- setup.hdvp public

| |

| +--+ visualization.hdpl library

| |

| +--- init private

| +--- process private

| +--- setup public

|

+--+ procedures/common/

|

+--- config.hdvp public

In procedure a call to resolves to
main init init (local procedure in example.hdev)
project/visualization.hdpl/setup init project/visualization.hdpl/init
common/config init project/init
main process -
project/visualization.hdpl/init process project/visualization.hdpl/process
compute_results local -
project/setup local project/local

5.6 Protected Procedures

Procedures can be protected by a password. Protected procedures may be executed by all users. However, the
interface, documentation, and program code can only be accessed if the correct password is supplied.

Instead of protecting single procedures individually, all procedures of an HDevelop program or a library, respec-
tively, can also be protected as a whole.

Protected procedures alter between two states:

A protected procedure is locked if the password has not been entered in the current session. Locked procedures
cannot be modified, and the program code is not visible in the program window.

A protected procedure is unlocked after the correct password has been entered. Unlocked procedures may be
modified, and the program code is visible in the program window.

To protect individual procedures, see section 6.17.9 on page 145.

To manage the protection state of multiple procedures, see section 6.16.8 on page 118.

5.7 Procedure Documentation

HDevelop procedures can be documented like operators. The documentation may include a detailed description of
the functionality of the procedure, example code, links to other procedures or operators, and concise documentation
of each parameter.

To manage a large collection of procedures, the procedures can be ordered in a hierarchical way. Procedures can
be ordered by chapters and sections just like operators.

The description of procedures can be formatted using Markdown syntax.

See section 6.17.8 on page 141 for details.

P
ro

ce
du

re
s

48 HDevelop Procedures

5.8 Legacy Procedures

Certain HDevelop procedures are obsolete. These procedures are only provided for backward compatibility. They
are listed in the corresponding Legacy chapter and, just as for operators, a warning icon is displayed as a reminder
in the operator window as well as in the program window. If you move the mouser cursor over the latter one you
get a tool tip with corresponding warning message.

You can also add warning messages with corresponding icons yourself. For more information, see section 6.17.8.1
on page 141.

5.9 Just-in-Time Compilation

HDevelop supports just-in-time (JIT) compilation of procedures for optimized performance of HDevelop pro-
grams. The JIT compiler is enabled in the “experienced user” settings of the preferences dialog (see section 6.16.12
on page 122). Once enabled, JIT compilation works without any user intervention. Before executing a procedure
for the first time, HDevelop automatically compiles it to optimized bytecode. The additional compilation time is
only relevant when executing a procedure for the first time in the current session. A re-compilation is triggered by
changes to the corresponding procedure.

Messages of the JIT compiler are logged to the output console (see section 6.1.9 on page 63). This includes infor-
mative events to indicate that a procedure has been (re-)compiled as well as warning events to indicate problems
related to JIT compilation.

The speed-up that can be achieved by JIT compilation depends on the structure of the procedure code. If the
procedure body contains only consecutive operator calls, the performance gain will be negligible. However, if
the execution of a procedure includes a considerable amount of program line switching (for example, loops), the
performance gain can be significant.

When using
�� ��F7 during program execution to step into a procedure, the procedure is executed uncompiled by the

HDevelop interpreter.

If an error occurs inside a compiled procedure, the whole procedure call is aborted. The program counter will not
indicate the actual program line that caused the error. To debug the corresponding procedure you can step into the
procedure call with

�� ��F7 (thereby interpreting its code) or disable JIT compilation altogether in the preferences.

Error message dialogs within try-catch blocks are always suppressed in JIT-compiled procedures regardless of
the corresponding setting in the “experienced user” preferences (see section 6.16.12 on page 122).

In HDevelop, the HALCON system parameter “use_window_thread” (see set_system) is activated by default to
ensure that on windows systems all top level HALCON graphics and text windows are opened in a special window
thread. This setting must not be deactivated. Otherwise, HDevelop may hang, for example, when displaying
objects in a HALCON graphics window during regular execution and the window was previously opened during
JIT-compiled execution.

JIT Compilation and Semantic Types

In JIT-compiled code, control variables always have the semantic type “any”. In most cases this does not cause
any problems since the semantic type is used mainly for visualization purposes, for example, the inspection of
variables. However, for thread IDs returned by the qualifier par_start (see section 8.11.1 on page 283), the loss
of the semantic type “thread_id” can lead to a different runtime behavior of JIT-compiled code. This is caused
by the fact that the lifetime of a thread depends on any variables that are still referencing its thread ID. Now,
when a control variable with the original semantic type “thread_id” is copied to another control variable inside a
JIT-compiled procedure, HDevelop loses track of the additional reference because of the missing semantic type.

In general, procedures that manipulate variables with the semantic type “thread_id” should be excluded from JIT
compilation, which is best done by classifying the semantic types of its parameters accordingly as described in
section 6.17.8.2 on page 144.

Limitations

JIT compilation is not supported for procedures that use any of the following features:

5.9 Just-in-Time Compilation 49

• procedure parameters with semantic type “thread_id” (see above)

• invalid program lines

• stop or active breakpoint

• dev_inspect_ctrl

• dev_close_inspect_ctrl

• dev_error_var

• drag_region_* operators

• get_mbutton_* operators

• draw_* operators

• procedure calls using the par_start qualifier

• par_join

• dev_display with a vector expression as variable

• for loop with a vector expression as index variable

• call of any procedure that cannot be JIT compiled due to the above reasons.

If one of these features is found, the corresponding procedure is called uncompiled as before by the HDevelop
interpreter.

Note that when an exception is thrown in compiled procedures, the data slot “call_stack_depth” is always returned
as -1 (either when inspecting the exception in the variable window or using dev_get_exception_data).

P
ro

ce
du

re
s

50 HDevelop Procedures

Graphical User Interface 51

Chapter 6

Graphical User Interface

This chapter is the reference to the graphical user interface of HDevelop.

Figure 6.1: HDevelop main window.

The HDevelop main window contains the following components: The window title shows the given name of the
current program. Unsaved changes in the current program are indicated with a trailing asterisk (*) in the window
title.

• Menu

The menu at the top provides access to the functionality of HDevelop. The menus and their entries are
described in section 6.1.
At the right end of the menu, there is a feedback button .

• Tool Bar

The tool bar icons provide convenient shortcuts for frequently used functions, see section 6.2 on page 64.

• Status Bar

The status bar displays context-sensitive information about a specific user action, or the runtime of operator
or procedure calls (unless time measurement has been deactivated in the preferences, see section 6.16.14 on
page 124).
For some very time-consuming operators, like trainf_ocr_class_mlp or train_class_svm, the status
bar also displays a progress bar for more information see section 6.3 on page 65.

G
U

IR
ef

er
en

ce

52 Graphical User Interface

• Window Area

The main part of the window is reserved for the dockable windows and dialogs of HDevelop, like the Canvas
Window, the File Selection Dialog, the Graphics Window, and so on.

6.1 Menu

The menu of the main window provides access to the complete functionality of HDevelop. Every menu item opens
a drop-down menu with optional submenus. You can either access the menu by clicking an item, or by pressing
the

�� ��Alt key in combination with the underlined letter of the menu item. In the following sections, the menu entries
are described in the order in which they appear.

6.1.1 Menu File

This menu provides functions to load existing programs and to save recently created or modified programs and
procedures. See section 5.2 on page 44 for the supported file types. Here, HDevelop programs can be exported to
C++, C, Visual Basic .NET, C#, or plain text and also be printed. The menu also provides access to the supplied
example programs and allows you to read arbitrary images.

The file type of programs and external procedures is persistent: If you load a program in the older .dev format
and save it again, it will not be converted to the newer .hdev format unless explicitly specified in the dialogs Save
Program As... or Save Procedure As.... Additionally, it is possible to convert HDevelop programs and
procedures between the old and the new format by calling hdevelop -convert from the command line.

For new programs, the default file format (.hdev) will be used. When you save a program for the first time, you
can also select the older file format in the corresponding dialog. If you want to use the older format all the time,
you can make it the default by modifying the preferences, see General Options (page 120).

Menu Entry Description Shortcut
New Program Initialize a new HDevelop program.

�� ��Ctrl+N

Open Program...
Load an existing HDevelop program. After you have loaded a
program, the corresponding file name is added to the top of the
menu Recent Programs.

�� ��Ctrl+O

Browse HDevelop
Example Programs...

Load HDevelop example programs grouped by categories. To
scan through several example programs quickly, select Keep

dialog open. More info (page 69)

�� ��Ctrl+E

Recent Programs
Load recently used HDevelop programs. The number menu
entries can be customized in the preferences (see General

Options . General Options).

Open Procedure For
Editing...

Load an external procedure or library. If a library is selected, all
included procedures are loaded for editing. Procedures opened
through this dialog need not be part of the configured procedure
locations. More info (page 45)

Close Procedure

Closes the procedure, currently visible in the program window.
If a procedure was opened explicitly, it will be kept open even
if its path is not configured in the preferences. Closing the pro-
cedure will uncheck this option. Thus, if the procedure is not
reachable via the procedure path, it will be closed.

Close All Procedures

Closes all procedures that are currently opened. If a procedure
was opened explicitly, it will be kept open even if its path is
not configured in the preferences. Closing all procedures will
uncheck this option for all open procedures. All procedures that
are not reachable via the procedure paths will be closed.

6.1.1 Menu File 53

Menu Entry Description Shortcut

Save

Saves changes of the current HDevelop program or the currently
selected external procedure. Local procedures are saved within
the HDevelop program. To save modified external procedures as
well, select the menu entry Save All, or select the correspond-
ing procedure in the program window and click Save again. A
modified external procedure is marked with an asterisk (*) in the
program window.

�� ��Ctrl+S

Save Program As...
Save the current HDevelop program to a new file. The file
name of the program you save is added to the menu Recent

Programs.

�� ��Ctrl+Shift+S

Save Procedure As...

Save the current procedure as...
...an external procedure (*.hdvp or *.dvp): This is one method
to make an internal procedure external. If you do not change the
name of the procedure, the internal procedure will conceal the
external procedure.
...an HDevelop program (*.hdev or *.dev): An empty main
procedure is added to the target file, and the procedure is added
to the program as a local procedure.

�� ��Ctrl+Shift+P,S or�� ��Ctrl+Shift+P,Ctrl+Shift+S

Save All

If no name has been specified for the current program yet, the
behavior is similar to that of Save Program As.... In addi-
tion, all modified external procedures marked with an asterisk
(*) in the program window’s combo box are saved.

�� ��Ctrl+Alt+S

Export Program... Export program code to a programming language or as a text file.
More info (page 69)

�� ��Ctrl+Shift+O,X or�� ��Ctrl+Shift+O,Ctrl+Shift+X

Export Library
Project...

Export library/local procedures as a C++ or C# project. More
info (page 303)

Read Image... Add an image file to the current program. More info (page 24)
�� ��Ctrl+R

Properties Display various properties of the current program. More info
(page 110)

Print Print the current program or selected procedures. More info
(page 110)

�� ��Ctrl+P

Quit Terminate HDevelop. See also: exit.
�� ��Ctrl+Q

Reload All
Reloads all changed files and resets the program. The PC is
set back to the first executable line of the main procedure. All
variables are reset.

G
U

IR
ef

er
en

ce

54 Graphical User Interface

6.1.2 Menu Edit

This menu holds the functions to modify the current HDevelop procedure body as shown in the program window.
You can also access the preferences of HDevelop from this menu.

Menu Entry Description Shortcut
Undo Only editing activities can be undone, not file operations.

�� ��Ctrl+Z

Redo Undo activities.
�� ��Ctrl+Y

Cut
Cuts selected text to clipboard. For procedure calls, the corre-
sponding local procedures and the paths to external procedures
are also copied.

�� ��Ctrl+X or
�� ��Shift+Del

Copy
Copies selected text to clipboard. For procedure calls, the corre-
sponding local procedures and the paths to external procedures
are also copied.

�� ��Ctrl+C or
�� ��Ctrl+Ins

Paste

Pastes clipboard content. Whether local procedures are also
pasted depends on the setting of Copy local procedures in full-
text editor (page 121). Before an external procedure path is
added, you are asked whether or not you want to add that path to
the external procedure paths.

�� ��Ctrl+V or
�� ��Shift+Ins

Activate
Re-enable the highlighted program lines previously disabled
with Deactivate. Comment lines created with the operator
comment are unaffected.

�� ��F3

Deactivate
Disable the highlighted program lines. An asterisk at the begin-
ning of the selected lines marks them as comments. Comment
lines created with the operator comment are unaffected.

�� ��F4

Find/Replace...
Opens the Find/Replace dialog for full-text search, to search
for variable names, or to search for operator or procedure calls.
More info (page 71)

�� ��Ctrl+F

Find Again Repeats the search specified via the menu item
Find/Replace....

�� ��Ctrl+G

Set/Clear Book-
mark

Toggle bookmarking of selected program lines. Bookmarks are
not saved with the program.

�� ��Ctrl+F11

Next Bookmark

Jumps to the next bookmarked program line, either in the current
procedure or in the first following procedure containing book-
marks. Procedures are traversed in alphabetical order except for
the main procedure always coming first.

�� ��F11

Previous Bookmark

Jumps to the last bookmarked program line, either in the current
procedure or in the first preceding procedure containing book-
marks. Procedures are traversed backwards in alphabetical order
except for the main procedure always coming first.

�� ��Shift+F11

Manage Bookmarks Opens the Quick Navigation window to manage bookmarks and
navigate to the bookmarked program lines. More info (page 154)

�� ��Ctrl+Shift+O,F11 or�� ��Ctrl+Shift+O,Ctrl+Shift+F11

Invalid Lines Opens the Quick Navigation window to manage invalid program
lines. More info (page 152)

�� ��Ctrl+Shift+O,F12 or�� ��Ctrl+Shift+O,Ctrl+Shift+F12

Preferences Opens dialog to set global preferences. More info (page 111)
�� ��Ctrl+Shift+O,S or�� ��Ctrl+Shift+O,Ctrl+Shift+S

6.1.3 Menu Execute 55

6.1.3 Menu Execute

This menu item provides all necessary functions to execute an HDevelop program. In HDevelop, program execu-
tion is always continued at the top-most procedure call, which in most cases corresponds to the current procedure
call. The procedure body displayed in the program window belongs to the current procedure.

Menu Entry Description Shortcut

Run

Execute the program from the program counter (PC) to the
next breakpoint, stop instruction, or the last program line. More
info (page 37). Further, you can adjust the runtime behavior in
the Runtime Settings (page 124).

�� ��F5

Run To Insert Cursor
Execute the program from the PC to the insert cursor (IC) .
Breakpoints or stop instructions between PC and IC stop the
execution.

�� ��Shift+F5

Step Over Execute the next operator or procedure in the current program.
�� ��F6

Step Forward Execute the program line per line. In case of loops, only the first
run is single-stepped.

�� ��Shift+F6

Step Into Step into a procedure. Click Step Into with the PC on a pro-
cedure call line.

�� ��F7

Step Out Step out of a procedure.
�� ��F8

Stop

Stop the program execution. Processing continues until the cur-
rent operator has finished its computations. Some operators sup-
port timeouts, in which case their intermediate results are dis-
carded.

�� ��F9

Stop After Proce-
dure Same as Stop but finishes the current procedure (if any) first.

�� ��Shift+F9

Attach To Process... Debug an external HDevEngine application. More info (page
299)

Stop Debugging Stop debugging an external HDevEngine application.
Thread View /

Call Stack
Visualize started threads and the calling hierarchy. More info
(page 159)

�� ��Ctrl+Shift+O,C or�� ��Ctrl+Shift+O,Ctrl+Shift+C

Set / Clear Break-
point

Set or clear breakpoints at the selected program lines. You
can also set breakpoints by holding the

�� ��Ctrl key and clicking
in the left column of the program window as described in sec-
tion 6.17.3 on page 132.

�� ��F10

Activate / Deacti-
vate Breakpoint

Toggles the state of the breakpoints in the selected program lines.
This can help to switch between continuous run mode and debug
mode. To deactivate/activate the breakpoints in many procedures
at once, use the tab Breakpoints of the Quick Navigation Win-
dow (see section 6.18.3 on page 153).

�� ��Shift+F10

Clear All Break-
points

Both line-based breakpoints as well as breakpoints on variables
are cleared.

Manage Breakpoints Opens the Quick Navigation Window to manage breakpoints.
More info (page 153)

�� ��Ctrl+Shift+O,F10 or�� ��Ctrl+Shift+O,Ctrl+Shift+F10

Reset Program
Execution

The PC is set to the first executable line of the main procedure.
All variables are reset.

�� ��F2

Reset Procedure
Execution

Useful for debugging procedures without affecting the calling
procedures. The PC is set back to the first executable line of
the current procedure. All variables of the current procedure are
reset.

�� ��Shift+F2

Abort Procedure
Execution

The PC is set back to the first executable line of the current pro-
cedure. All variables of the current procedure are reset.

�� ��Shift+F8

Activate / Deacti-
vate Profiler

Toggle the profiler section of the program window, which dis-
plays runtime statistics, like the total and average processing
time of each program line. More info (page 147)

�� ��Ctrl+Shift+F,F or�� ��Ctrl+Shift+F,Ctrl+Shift+F

Profiler Display Select what is being displayed in the profiler section of the pro-
gram window. More info (page 148)

G
U

IR
ef

er
en

ce

56 Graphical User Interface

Menu Entry Description Shortcut

Reset Profiler Reset profiler data.
�� ��Ctrl+Shift+F,R or�� ��Ctrl+Shift+F,Ctrl+Shift+R

Show Runtime
Statistics Evaluate runtime statistics.

�� ��Ctrl+Shift+F,S or�� ��Ctrl+Shift+F,Ctrl+Shift+S

6.1.4 Menu Visualization

Via this menu, you can open or close graphics windows and clear their displays. Their output behavior during
runtime can also be specified here. Most functions are also available from the context menu of the graphics
window.

Menu Entry Description Shortcut

Open Graphics
Window...

Specify the position, size, and background color of the
new graphics window. More info (page 74). See also
dev_open_window.

�� ��Ctrl+Shift+G,O or�� ��Ctrl+Shift+G,Ctrl+Shift+O

Clear Graphics
Window

Clear active graphics window. The history (previously dis-
played objects) of the window is also cleared. See also
dev_clear_window.

�� ��Ctrl+Shift+G,Del or�� ��Ctrl+Shift+G,Ctrl+Shift+Del

Close Graphics
Window Close active graphics window. See also dev_close_window.

�� ��Ctrl+Shift+G,Q or�� ��Ctrl+Shift+G,Ctrl+Shift+Q

Display
Select iconic variable to be displayed in active graphics window.
This submenu lists all instantiated iconic variables (images, re-
gions, XLDs) for quick selection. See also dev_display.

Window Size

Set window size of active graphics window. Double and Half

change the size to half and double its current window size, re-
spectively. Aspect Ratio 1:1 scales down the current win-
dow size, so that the aspect ratio of the displayed image is main-
tained. See also dev_set_window_extents.

Image Size This submenu offers a list of zoom options to scale the image
and to control its resizing behavior. More info (page 75)

Colored

Color regions and XLDs as an easy way to display multiple re-
gions or XLDs. Each region is displayed in a different color,
where the number of different colors (3, 6, or 12) is specified
in the submenu; default: 12 colors. If all regions are still dis-
played with one color, use the operator connection beforehand.
You can check this also with the operator count_obj. See also
dev_set_colored.

Color

Choose a color for displaying segmentation results (regions and
XLDs), text created with write_string, and general line draw-
ings (for example, 3D plots, contour lines, and bar charts); de-
fault color: red. The number of available colors depends on the
graphics display (that is, the number of bits used for displaying).
After selecting a color, the previously displayed region or XLD
object will be redisplayed with this color if Apply Changes

Immediately is selected. See also dev_set_color.

Draw

Select a visualization mode to display regions. It can either be
filled (menu entry fill) or outlined (menu entry margin). If set
to margin, the line thickness of the displayed regions is specified
using the menu item Line Width. See also dev_set_draw.

Line Width
Determine the line width for painting XLDs, borders of regions,
or other types of lines. See also dev_set_line_width.

Shape
Specify the representation shape for regions. You can display not
only the region’s original shape but also its enclosing rectangle
or its enclosing circle. See also dev_set_shape.

6.1.4 Menu Visualization 57

Menu Entry Description Shortcut

Lut

Specify a look-up table to display gray value images and color
images in different intensities and colors. In the case of a true
color display, the image has to be redisplayed due to the miss-
ing support of a look-up table in the graphics hardware. For
color images only the gray look-up tables can be used, which
change each channel (separately) with the same table. See also
dev_set_lut.

Paint Define the mode to display gray value images. See the menu
item Set Parameters below. See also dev_set_paint.

Attach To Canvas /
Detach From Canvas

Add the selected graphics window to or remove it from the can-
vas.

Apply Changes Im-
mediately

If checked, any changes to the visualization settings are ap-
plied immediately to the active graphics window. Otherwise, the
changes are deferred until the next object is displayed.

Set Parameters Opens the Visualization Parameters of the active graphics
window. More info (page 76)

�� ��Ctrl+Shift+G,P or�� ��Ctrl+Shift+G,Ctrl+Shift+P

Reset Parameters

Reset the visualization parameters of the active graphics win-
dow to the default settings (as defined in the preferences; see
section 6.16 on page 111). The only exception is the size of the
window. To clear the history of previously displayed objects, use
Clear Graphics Window. To set the size, use Window Size.

Record Interactions

If enabled, any subsequent changes to the visualization settings
will insert the corresponding operator call(s) into the current
program. Unlike Insert Code..., which dumps the current
settings in one block, Record Interactions allows you to
selectively adjust the settings you want to replay in your pro-
gram. This includes opening, activating, and closing graphics
windows, displaying or clearing iconic objects, adjusting the im-
age or window size from the menu or the tool bar, as well as
adjusting the draw colors, draw mode, line width, region shape,
LUT, and paint mode.

�� ��Ctrl+I

Insert Code...
Insert code into the current program that can be used to restore
the current settings of the graphics window. More info (page 40)

�� ��Ctrl+Shift+G,I or�� ��Ctrl+Shift+G,Ctrl+Shift+I

Update Window

Specify the update behavior of the active graphics window.
Check In Run Mode to update images, regions, or XLDs dur-
ing program execution. The submenu In Single Step Mode

specifies the update behavior when stepping through the pro-
gram.
Always: display iconic results
Never: do not display iconic results
Clear And Display: clear graphics window before displaying
iconic results
Last Image And Display: keep displaying the latest image
and additional iconic results
As in Run Mode: same behavior as run mode setting

Position Precision

Select the precision of subpixel mouse positions. By default,
mouse positions are displayed as integers (precision 0), where
the upper left image pixel is displayed as 0, 0. Increasing the
precision results in mouse positions being reported as subpixel-
precise positions. Please note that when subpixel mouse posi-
tions are enabled, the position 0.0, 0.0 refers to the center of
the upper left pixel. The upper left edge of the image is displayed
as -0.5, -0.5.

Pixel Grid
To easier visualize the pixels when an image is zoomed, a Pixel
Grid can be set.

G
U

IR
ef

er
en

ce

58 Graphical User Interface

Menu Entry Description Shortcut

Save Window...

The graphics window is saved “as is” (including displayed re-
gions and XLDs). In the file dialog, you can select between the
output formats TIFF, BMP, JPEG, PNG, or PostScript. See also
dump_window.

�� ��Ctrl+Shift+G,S or�� ��Ctrl+Shift+G,Ctrl+Shift+S

Submenu Tools

Menu Entry Description Shortcut

Zoom Window Open zoom window for image details and pixel inspection. More
info (page 176)

�� ��Ctrl+Shift+O,Z or�� ��Ctrl+Shift+O,Ctrl+Shift+Z

New Zoom Window Open additional zoom window. More info (page 176)

Gray Histogram
Display gray value histogram of active graphics window, can
also be used to select thresholds interactively and to set the range
of displayed gray values dynamically. More info (page 98)

�� ��Ctrl+Shift+O,H or�� ��Ctrl+Shift+O,Ctrl+Shift+H

Feature His-
togram Interactively inspect feature histograms. More info (page 103)

�� ��Ctrl+Shift+O,F or�� ��Ctrl+Shift+O,Ctrl+Shift+F

Feature Inspec-
tion

Inspect shape and gray value features of individual regions.
More info (page 104)

�� ��Ctrl+Shift+O,I or�� ��Ctrl+Shift+O,Ctrl+Shift+I

Line Profile Display line profile of active graphics window. More info (page
106)

�� ��Ctrl+Shift+O,L or�� ��Ctrl+Shift+O,Ctrl+Shift+L

OCR Training
File Browser Browse OCR training files. More info (page 85)

�� ��Ctrl+Shift+O,T or�� ��Ctrl+Shift+O,Ctrl+Shift+T

6.1.5 Menu Procedures 59

6.1.5 Menu Procedures

This menu contains all functionality that is needed to create, modify, copy, or delete HDevelop procedures. To
save procedures, refer to the File menu (section 6.1.1 on page 52).

Menu Entry Description Shortcut
Create New Proce-
dure

Opens the procedure interface window to create a new internal
or external procedure. More info (page 134)

�� ��Ctrl+Shift+P,C or�� ��Ctrl+Shift+P,Ctrl+Shift+C

Duplicate...

Copy a procedure under a different name. Choose the procedure
to be copied via Source. Enter the name of the copied procedure
into Target. The copy retains the status (local or external) of the
source procedure. The copy of an external procedure is placed
in the same directory as the source procedure. Duplicating pro-
cedures that are protected with a password is also possible; see
section 5.6 on page 47. The associated password is also used for
the duplicated procedure.

Edit Procedure In-
terface

Opens the procedure interface window and displays the interface
of the current procedure. The menu item has the same effect as
the button in the program window (page 126). The interface
of protected procedures can only be edited after the correspond-
ing password has been entered; see section 5.6 on page 47.

�� ��Ctrl+Shift+P,I or�� ��Ctrl+Shift+P,Ctrl+Shift+I

Delete Current

If the current procedure is a local procedure, it is deleted from the
program and the main procedure becomes the current procedure.
All calls to the local procedure in the current program are marked
as invalid code. This item is disabled if the current procedure is
the main procedure, or if it is an external procedure.

�� ��Ctrl+Shift+P,Del or�� ��Ctrl+Shift+P,Ctrl+Shift+Del

Delete All Unused
Local

All local procedures that cannot be reached by any procedure
call from the main procedure are deleted from the program. If
the current procedure is among the deleted procedures, the main
procedure becomes the current procedure.

Insert Used As Local
The external procedures used in the current program are copied
as local procedures. The external procedure files are left un-
touched.

Insert All As Local

All external procedures are copied to the current program as lo-
cal procedures, regardless if they are used or not. The external
procedure files are left untouched. If your program contains pro-
tected external procedures, HDevelop issues a warning and in-
serts only the procedures that are not locked. For changing the
status of a procedure, see section 5.6 on page 47.

Make All External

Convert all local procedures into external procedures. Former
local procedures are stored as external procedures in a selectable
directory of the list of external procedure directories. More info
(page 114)

Manage Proce-
dures

Opens the dialog Preferences . Procedures to configure pro-
cedure settings. More info (page 116)

Edit Procedure
Select a procedure for editing in the program window. This sub-
menu lists all procedures in submenus, grouped by chapter and
section title. More info (page 141)

G
U

IR
ef

er
en

ce

60 Graphical User Interface

6.1.6 Menu Operators

This menu contains all HALCON and HDevelop operators including the HDevelop control constructs as well as
all internal and external HALCON procedures.

For detailed information about all operators and procedures, we recommend reading the corresponding sections of
the reference manual. To get there quickly, select an operator or procedure from the menu, and then press

�� ��F1 .

Menu Entry Description

Control Select control structures, meaning, operators that control the pro-
gram flow like if, else, for, while.

Develop

These operators allow you to interact with the user interface.
The operators start with the prefix dev_ to distinguish them
from the underlying basic HALCON operators (for example,
dev_set_color and set_color).

1D Measuring, 2D Metrology, ... Select HALCON operators and procedures sorted by categories.

Legacy List obsolete HALCON operators, provided for backward com-
patibility.

Unclassified List all HALCON operators and procedures not listed in any of
the other categories, like 1D Measuring, 2D Metrology, etc.

6.1.7 Menu Suggestions 61

6.1.7 Menu Suggestions

This menu shows another possibility how to select HALCON operators via suggestions. Assuming that you have
already selected an operator in a previous step, depending on this operator, the following suggestions are offered.

Suggestions are separated into groups as described below.

Menu Entry Description Shortcut

Alternatives
Suggests alternative operators. For example, replace
mean_image with operators such as binomial_filter,
gauss_filter, or smooth_image.

See also

Shows operators that have some connection to the current oper-
ator. For example, the operator gen_lowpass, which is used to
create a lowpass filter in the frequency domain, is a reasonable
reference to a Gaussian filter.

Predecessors

Many operators require a reasonable or necessary predecessor
operator. For example, before computing junction points in
a skeleton (junctions_skeleton), you have to compute this
skeleton itself (skeleton).

Successors

Shows possible successor operators. Image processing tasks of-
ten result in a “natural” sequence of operators. For example, you
use a thresholding after executing an edge filter or you execute a
region processing (for example, morphological operators) after
a segmentation.

Keywords Opens the tab card Index of the help window. More info (page
84)

�� ��Ctrl+Shift+H,K or�� ��Ctrl+Shift+H,Ctrl+Shift+K

G
U

IR
ef

er
en

ce

62 Graphical User Interface

6.1.8 Menu Assistants

This menu assembles assistants for specific machine vision tasks. The general concept of the assistants is described
in the chapter Assistants (page 179).

The following assistants are available:

Menu Entry Description

Open New Image Acquisition Acquire images from file or from image acquisition devices.
More info (page 180)

Open New Calibration Calibrate your camera setup using calibration images. More info
(page 184)

Open New Matching Locate objects. More info (page 202)
Open New Measure Measure 1D objects. More info (page 219)

Open New OCR Classic optical character recognition using classifiers. More info
(page 231)

6.1.9 Menu Window 63

6.1.9 Menu Window

This menu offers support to manage the sub-windows of the main window, such as the program, operator, variable,
graphics window(s), and possible other dialogs.

At the bottom of the menu, all open windows are listed. Click an entry to bring the corresponding window to the
front.

Menu Entry Description Shortcut

Open Graphics
Window Docked

The graphics window will be opened docked. See graphics win-
dow (page 74), and docked windows (page 17) for more infor-
mation. See also dev_open_window.

�� ��Ctrl+Shift+O,G or�� ��Ctrl+Shift+O,Ctrl+Shift+G

Open Graphics
Window in Canvas

The graphics window will be opened within the canvas. See
graphics window (page 74) for more information. See also
dev_open_window.

�� ��Ctrl+Shift+O,B or�� ��Ctrl+Shift+O,Ctrl+Shift+B

Open Program
Window

See program window (page 126) for more information. See also
dev_map_prog.

�� ��Ctrl+Shift+O,P or�� ��Ctrl+Shift+O,Ctrl+Shift+P

Open Variable
Window

This menu item is grayed out if the variable window is already
open. See variable window (page 159) for more information.
See also dev_map_prog.

�� ��Ctrl+Shift+O,V or�� ��Ctrl+Shift+O,Ctrl+Shift+V

Open Operator
Window

This menu item is grayed out if the operator window is already
open. You can also open the operator window by holding

�� ��Ctrl

and double-clicking a line in the program window. See operator-
Window (page 90) for more information.

�� ��Ctrl+Shift+O,O or�� ��Ctrl+Shift+O,Ctrl+Shift+O

Open Output Con-
sole

The output console window contains a log of the most recent
messages. More info (page 94)

�� ��Ctrl+Shift+O,E or�� ��Ctrl+Shift+O,Ctrl+Shift+E

Open Quick Nav-
igation Manage program lines on certain criteria. More info (page 151)

�� ��Ctrl+Shift+O,R or�� ��Ctrl+Shift+O,Ctrl+Shift+R

Open Canvas
Window

The canvas window is a container for graphics windows. It al-
lows you to organize multiple graphics windows side-by-side.
More info (page 66)

�� ��Ctrl+Shift+O,A or�� ��Ctrl+Shift+O,Ctrl+Shift+A

Canvas Options Configure the canvas window. More info (page 66)

Cascade Floating
Windows

Arrange all floating windows so that they overlap each other,
while keeping their title bars visible. The origin of the first cas-
cading window is set by Origin of coordinates (page 121).

�� ��Ctrl+Shift+W,C or�� ��Ctrl+Shift+W,Ctrl+Shift+C

Bring Main Window
To Front

Raises the main window to the top. Works only if your windows
are minimizable.

�� ��Ctrl+Shift+W,W or�� ��Ctrl+Shift+W,Ctrl+Shift+W

Bring Others To
Front

Raises all floating windows to the top. Works only if your win-
dows are minimizable.

�� ��Ctrl+Shift+W,B or�� ��Ctrl+Shift+W,Ctrl+Shift+B

Full Screen Toggle full screen mode.
�� ��Ctrl+Shift+W,F or�� ��Ctrl+Shift+W,Ctrl+Shift+F

Restore Default Lay-
out Use

The canvas and the docked graphics window are docked top left.

G
U

IR
ef

er
en

ce

64 Graphical User Interface

6.1.10 Menu Help

This menu offers a version check and access to the HALCON documentation.

Menu Entry Description Shortcut
Help Open the Help Window. More info (page 82)

�� ��F1

Context Help Based on the currently focused window or tab card, the corre-
sponding help page is opened.

�� ��Shift+F1

Start Dialog Open the Start dialog, which helps you getting started with HAL-
CON. More info (page 16)

�� ��Ctrl+Shift+H,S or�� ��Ctrl+Shift+H,Ctrl+Shift+S

Telemetry Dialog Open the Telemetry dialog.

HALCON Reference
Open the reference documentation of HALCON operators and
classes, available in HDevelop, .NET, Python, C++, and C syn-
tax.

�� ��Ctrl+Shift+H,R or�� ��Ctrl+Shift+H,Ctrl+Shift+R

HDevelop User’s
Guide

Open a guide to HDevelop, the interactive programming envi-
ronment for the HALCON machine vision library.

�� ��Ctrl+Shift+H,U or�� ��Ctrl+Shift+H,Ctrl+Shift+U

HDevelop Language Open the introduction to the syntax and semantics of the HDe-
velop language in the HDevelop User’s Guide.

�� ��Ctrl+Shift+H,L or�� ��Ctrl+Shift+H,Ctrl+Shift+L

Search Documenta-
tion Search for keywords in the documentation. More info (page 82)

�� ��Ctrl+Shift+H,F or�� ��Ctrl+Shift+H,Ctrl+Shift+F

HALCON News
(WWW) Check the latest news about HALCON on the MVTec website.

�� ��Ctrl+Shift+H,W or�� ��Ctrl+Shift+H,Ctrl+Shift+W

Check For Updates Open a version check in your web browser.
�� ��Ctrl+Shift+H, C

About Shows version and license information, like the HALCON edi-
tion, license type, license expiration date, and the like.

�� ��Ctrl+Shift+H,A or�� ��Ctrl+Shift+H,Ctrl+Shift+A

6.2 Tool Bar

Action Shortcut Info
New Program

�� ��Ctrl+N section 6.1.1 on page 53
Open Program...

�� ��Ctrl+O section 6.1.1 on page 53
Browse HDevelop Example Programs...

�� ��Ctrl+E section 6.1.1 on page 53
Save

�� ��Ctrl+S section 6.1.1 on page 53
Save All

�� ��Ctrl+Alt+S section 6.1.1 on page 53
Image Acquisition Assistant section 7.1 on page 180
Undo

�� ��Ctrl+Z section 6.1.2 on page 54
Redo

�� ��Ctrl+Y section 6.1.2 on page 54
Activate

�� ��F3 section 6.1.2 on page 54
Deactivate

�� ��F4 section 6.1.2 on page 54
Find/Replace...

�� ��Ctrl+F section 6.7 on page 71
Run

�� ��F5 section 6.1.3 on page 56
Step Over

�� ��F6 section 6.1.3 on page 56
Step Into

�� ��F7 section 6.1.3 on page 56
Step Out

�� ��F8 section 6.1.3 on page 56
Stop

�� ��F9 section 6.1.3 on page 56
Reset Program Execution

�� ��F2 section 6.1.3 on page 56
Reset Procedure Execution

�� ��Shift+F2 section 6.1.3 on page 56
Thread View / Call Stack

�� ��Ctrl+Shift+O,C or
�� ��Ctrl+Shift+O,Ctrl+Shift+C section 6.20 on page 159

Activate Profiler
�� ��Ctrl+Shift+F,F or

�� ��Ctrl+Shift+F,Ctrl+Shift+F section 6.1.3 on page 56
Zoom Window

�� ��Ctrl+Shift+O,Z or
�� ��Ctrl+Shift+O,Ctrl+Shift+Z section 6.1.4 on page 58

Gray Histogram
�� ��Ctrl+Shift+O,H or

�� ��Ctrl+Shift+O,Ctrl+Shift+H section 6.1.4 on page 58
Feature Histogram

�� ��Ctrl+Shift+O,F or
�� ��Ctrl+Shift+O,Ctrl+Shift+F section 6.1.4 on page 58

Feature Inspection
�� ��Ctrl+Shift+O,I or

�� ��Ctrl+Shift+O,Ctrl+Shift+I section 6.1.4 on page 58
Line Profile

�� ��Ctrl+Shift+O,L or
�� ��Ctrl+Shift+O,Ctrl+Shift+L section 6.1.4 on page 58

OCR Training File Browser
�� ��Ctrl+Shift+O,T or

�� ��Ctrl+Shift+O,Ctrl+Shift+T section 6.1.4 on page 58

6.3 Status Bar 65

6.3 Status Bar

The status bar is divided into the following areas:

Figure 6.2: The status bar.

Status icon Shows the current run status of the program. : Program stopped, : Program executing.

Messages and runtime information For example, if you select an operator from the menu, the corresponding
short description is displayed here. The runtime information depends on the run mode:

• When single-stepping through the program, the runtime of the last operator or procedure call is displayed.
If the option Show memory usage is activated in the preferences (see section 6.16.12 on page 122), the
operator’s required temporary HALCON memory will be displayed additionally. The displayed memory
does not include objects created by the operator, like images or tuples.

• In continuous run mode, a runtime summary of the executed program lines is displayed when the program
stops.

Right-clicking in the message area opens the context menu. It provides the following entries:

• Show Processing Time: Toggles whether execution messages are displayed in the status bar.

• Copy History to Clipboard: A history of the latest execution messages is displayed as a tool tip when
placing the mouse pointer over the message area of the status bar. The history can be copied to the clipboard
by selecting the entry Copy History to Clipboard in the context menu of the status bar.

• Open Output Console: The output console displays the message history in a separate window. See sec-
tion 6.1.9 on page 63.

Information about the image in the active graphics window The display format is [index] variable name (#=num-
ber of objects: height x width x channels x type)

Gray value of the image in the active graphics window at the mouse cursor position For multi-channel images,
the gray values of all channels are displayed separated by commas.

Image coordinates in the graphics window (row, column)

Notification icon Indicates new downloadable HALCON updates. : No new update available; : New
HALCON update available. Click to open a version check in your web browser. See http://www.mvtec.

com/imprint for information about MVTec’s privacy policy.

G
U

IR
ef

er
en

ce

http://www.mvtec.com/imprint
http://www.mvtec.com/imprint

66 Graphical User Interface

MVTec logo Click the logo to open our website http://www.halcon.com.

6.4 Canvas Window

The canvas window is a container for graphics windows. It allows you to organize multiple graphics windows
side-by-side.

You can open the canvas via dev_open_tool or via menu Window . Open Canvas Window. As soon as the
canvas window is opened, all new graphics windows opened with dev_open_window will automatically show up
on the canvas. You can add any additional graphics window to the canvas manually by clicking its context menu
entry Attach To Canvas. To remove a graphics window from the canvas, open its context menu and choose
Detach From Canvas.

The canvas displays graphics window states as follows:

Active: A yellow stroke highlights the active graphics window, see figure 6.3.

Selected: An orange colored frame indicates the selected graphics window figure 6.3.

The canvas window cannot be tabbed with other windows.

Figure 6.3: The canvas window.

6.4.1 Canvas Options

To set the canvas options click the canvas tab within the preferences dialog figure 6.4, right-click the canvas;
or right-click any graphics window on the canvas and choose Canvas Options. Alternatively, choose Canvas

Options from the menu Window:

• Fit All Graphics Windows In View

The view is zoomed in or out once, so that all graphics windows on the canvas are visible at a glance with
optimal use of the available space.

To fit the view not only once, but continuously, enable both canvas options Auto-fit By Zooming Out

and Auto-fit By Zooming In.

The current zoom factor is displayed in the bottom right corner of the canvas window. Click the zoom
factor to reset the view to 100%.

http://www.halcon.com

6.4.1 Canvas Options 67

Figure 6.4: Canvas Options.

• Auto-fit By Zooming Out

The view is zoomed out automatically, so that all graphics windows on the canvas are always visible at a
glance without scrolling. This means, as soon as you try to move a graphics window across the borders of
the current view, the view adapts automatically by decreasing the zoom factor.

• Auto-fit By Zooming In

The view is zoomed in automatically, so that all graphics windows on the canvas are visible at a glance with
optimal use of the available space. This means, as soon as you move a graphics window towards the center
of the current view, the view adapts automatically by increasing the zoom factor to maximum 100%.

• Auto-adapt Viewport

The canvas view is focused automatically on the selected graphics window. Thus, the view follows the
selected graphics window. To scroll the canvas view manually, disable this option.

• Show Grid

The grid helps you arranging and resizing your graphics windows. The cross in the grid visualizes the
reference point (0, 0) for the graphics window position.

• Show Graphics Window Toolbar

You can hide the toolbar, for example, to maximize the image display. Most graphics windows features are
available via context menu, too. For example, the feature Float window to remove the graphics window
from the canvas again.

• Show Graphics Window Frame

The frame is necessary to make changes to the size or position of the graphics window. Disable this option,
if you are happy with its current position and size or if you want to focus on the image.

G
U

IR
ef

er
en

ce

68 Graphical User Interface

• Run Program with Floating Canvas

Enabling the Floating Canvas will automatically open a floating canvas window, as soon as a code line
in the script opens a graphics window, when dev_open_window is executed. All graphics windows will
then be displayed in the canvas window. This option is available within the preferences dialog within the
tabcard Canvas in the User Interface settings, see figure 6.4 on page 67. It is recommended to use this to
visualize examples, and the results of your program. Keep in mind that if a canvas window is already open,
all graphics windows will be displayed there. When a canvas was opened by a script, it will be closed when
a reset is executed by pressing

�� ��F2 . Should you want to open a canvas with a distinct size, dev_open_tool
(’canvas’,...) should be used.

• Run Program with Floating Graphics Window

Enabling the Floating Graphics Window will open all graphics windows separately. Keep in mind that
if a canvas window is already open, all graphics windows will be displayed there. This option is available
within the preferences dialog within the tabcard Canvas in the User Interface settings, see figure 6.4 on
page 67.

• Canvas reset behavior

When a canvas was opened via script it will be closed, when the F2 key is pressed. To open the canvas in a
distinct size dev_open_tool (’canvas’) should be used, and also the size of an already opened canvas can be
adjusted by this.

6.4.2 Zooming

To zoom the content of the canvas window:

1. Click inside the canvas window (either in the background area or inside a graphics window on the canvas).
→ The canvas window gets the focus, indicated by its frame turning from gray to orange.

2. Press
�� ��Ctrl+Shift++ to zoom in, or press

�� ��Ctrl+Shift+- to zoom out. Alternatively, hold
�� ��Ctrl or

�� ��Ctrl+Shift and
scroll up to zoom in, or scroll down to zoom out. You can change the zoom direction of the mouse
wheel via the general option Action when spinning the mouse wheel down (page 120). Note that this
setting also applies to the graphics window.
→ The current zoom factor is displayed in the bottom right corner of the canvas window.
Click the zoom factor to reset the view to 100%.

6.4.3 Moving

To scroll the canvas:

1. Disable the canvas option (page 66) Auto-adapt Viewport.

2. Drag (page 12) the canvas. Use the middle mouse button for dragging if your mouse is located over a
graphics window on the canvas.

To move a graphics window on the canvas:

1. Enable the canvas option Show Graphics Window Frame.

2. Drag the frame of the graphics window.

6.4.4 Resizing

To adapt the size of the graphics window on the canvas:

1. Enable the canvas option (page 66) Show Graphics Window Frame.

2. Drag (page 12) the bottom right corner of the graphics window.

Resizing is not possible during draw operations, like draw_rectangle1.!

6.5 Browse Example Programs Dialog 69

6.5 Browse Example Programs Dialog

Using this dialog, you can browse and load the example programs delivered with HALCON. To open the example
program browser, click File . Browse HDevelop Example Programs... (see figure 6.5).

Similar to a file browser, it shows a tree of topics on the left and a list of example programs from the selected topics
on the right.

Figure 6.5: HDevelop example programs.

Category name

Find text field

Browse the categories: Click a topic to select it and display its example programs. You can select multiple
topics at once by holding the

�� ��Ctrl key while clicking the categories.

Filter the example programs: To reduce the amount of listed example programs, enter a word or substring into the
Find text field. Only example programs matching this substring in the file name or short description will be

displayed.

Assume you are looking for a measuring example from the semiconductor industry:

1. Double-click Industry.

2. Click the subtopic Semiconductors. The examples belonging to the semiconductor industry are listed on
the right.

3. Enter the word measure into the Find text field.

Note how the list is updated as you type. Now, you have a short list of example programs to select from.
You may need to resize the example browser to fully read the short descriptions of the listed programs.

4. Select measure_ic_leads.hdev by clicking it.

5. Click Open. The selected example program is then loaded. Alternatively, you can load an example program
by double-clicking it. The example browser is closed unless Keep dialog open is selected.

6.6 Export Program Dialog

See also: hdevelop -convert (command line switch (page 323)).

Using this dialog, you can select an export format and write (parts of) the current program to a file in that format.
The dialog is displayed in figure 6.6.

The button next to the export file name opens a file selection dialog to select a file name and an export format. The
following formats are supported:

G
U

IR
ef

er
en

ce

70 Graphical User Interface

Format Syntax Extension More information
Text File HALCON/HDevelop .txt Plain text export
C HALCON/C .c section 10.2.4 on page 313
C++ HALCON/C++ .cpp section 10.2.1 on page 307
Visual Basic .NET HALCON/.NET .vb section 10.2.3 on page 311
C# HALCON/.NET .cs section 10.2.2 on page 309

The file name extension corresponding to the selected export format is appended to the specified file name.

Export Range

The export range specifies which parts of the current program are to be exported.

• Program: The entire program is exported the main procedure and all local procedures. All used exter-
nal procedures are exported depending on the setting of the external procedure options (see below).

• Current Procedure: The current procedure and all used local procedures are exported. All used ex-
ternal procedures are exported depending on the setting of the external procedure options (see below).

• External Procedures: All external procedures are exported depending on the setting of the external
procedure options (see below).

• Current Library: The current library is exported (all procedures that are part of the current library).
All used external procedures (that are not part of the current library) are exported depending on the
setting of the external procedure options (see below).

The short description and chapter information of procedures are exported as comments. Arbitrary code can
be embedded with special comment lines (see section 10.2.5 on page 314).

Procedure Options

Defines the export behavior for procedures.

• Export local procedures body: If checked, both the declaration and the body of local procedures
are exported. Otherwise, only the declaration is exported.

• Export external procedures body: If checked, both the declaration and the body of external
procedures is exported. Otherwise, only the declaration is exported.

• Export all referenced external procedures: Determines, if all referenced external proce-
dures are also exported with the current program.

Figure 6.6: Export.

6.7 Find/Replace Dialog 71

• External Procedures Destination: By default, external procedures are exported to a single file.
Select Separate Files to export external procedures to separate files. The file name corresponds to
the procedure name while the file extension is derived from the export format. Select Separate or

Library Files to export external procedures to separate files but keep the files of libraries together
in a single file.

• Export only if procedure is newer than export file: Export only those procedures to
separate files whose time stamp is newer than the time stamp of the destination file.

Window Export

Specifies the export behavior of HALCON windows:

• Use HALCON Windows: Export as a stand-alone project.

• Use Export Template (HALCON/.NET only): Export as a project using the supplied project tem-
plate.

Encoding

Specifies the encoding of exported programs.

• Native: Export in the encoding defined by the operating system.

• UTF-8: Force export in UTF-8 encoding (Unicode).

For C/C++, the encoding must match the interface encoding used by the application. For C#, exporting to
UTF-8 should always work fine.

Namespace

Can be used to avoid name conflicts between exported code and existing names in the client application, or
to avoid name conflicts between multiple exported libraries in the same client application.

• If this field is empty no namespace is used.

• If this field is filled all code, generated during this one export operation, will be wrapped using exactly
this one name.

• Template projects expect exported code without namespace, and a template export with namespace
only works with adapted projects.

• When performing multiple exports with different namespaces the exports for each namespace must
be self-contained including all dependencies. Exported procedure calls will not "see" exported pro-
cedures from the other namespace. The solution here would be to export the procedure call, with all
dependencies even if it can lead to code duplication.

• The separate exports cannot share global variables. To avoid this: Do not use global variables, or use
multiple "global def" declarations, and do not rely on sharing of global variables between libraries.

This icon appears in some cases, when an export may not be working. Hovering over the icon provides
more information.

Keep dialog open

Checking this box keeps the dialog open for subsequent exports.

6.7 Find/Replace Dialog

The Find/Replace dialog provides comprehensive facilities for searching the program code. You can perform a
full text search or search for variable names as well as operator (or procedure) calls. In addition, you can replace
variable names and substitute operator or procedure calls. The dialog is displayed in figure 6.7.

The search context can be set to one of the following entities:

Context Description
Variables Find program lines with variable names that match the search text.
Operators Find program lines with operator or procedure calls that match the search text.
Texts Full-text search. Find program lines that match the search text anywhere.

G
U

IR
ef

er
en

ce

72 Graphical User Interface

The search scope can be specified as follows:

Scope Description
All Search the main procedure, all local and all external procedures.
Program Search the main procedure and all used procedures.
Current Procedure Search the current procedure only.

Please note that locked procedures are not searched. See section 5.6 on page 47.!
The following options specify how the search is performed:

Option Description
Case Sensitive By default, the case of the search text is ignored, thus searching for image will find

Image or IMAGE as well. Check this box to make the search case-sensitive.
Whole Words By default, program lines are matched even if the search text is only part of

a word, thus an operator search for grab_image also matches operator calls to
grab_image_async or grab_image_start. Check this box to find only exact
matches.

Backward Check this box to reverse the search direction.

Finding Single Occurrences of the Search Text

Enter the search text and click Find. If there is no match, the text field will blink shortly. Otherwise, the first
matching program line in the current procedure is highlighted. Each subsequent click of Find highlights the next
matching program line. If the last matching line of the current scope has been reached, the text field blinks shortly.
The next click on Find starts over at the beginning.

Finding All Occurrences of the Search Text

Enter the search text and click Find All. The search result will be shown in the tab card Find Results of the
Quick Navigation window.

Clicking an entry focuses the corresponding program line in the active program window. If the selected procedure
is already displayed in a program window tab, the corresponding tab is activated. Otherwise, the current view
switches to the selected procedure.

You can even select multiple lines from the search result by holding the
�� ��Ctrl key. The following actions may

be performed for all selected lines (from the context menu of the search result): Cut (page 54), Copy (page 54),
Delete (page 54), Activate (page 54), Deactivate (page 54), and Bookmark Selection. Use Bookmark

Selection to add bookmarks to the selected program lines. This will also add the selected program lines to
the tab Bookmarks. This way you can “remember” a search result for later use; just open the Quick Navigation
window again (Menu Window . Open Quick Navigation) and go to the tab card Bookmarks.

The “find all” operation is recommended before doing a global replace to preview which program lines will be
affected.

Replacing Variable Names

Click Variables to specify the search context. Enter the search text and the replace text. You can replace parts of
variable names by keeping Whole Words unchecked.

Figure 6.7: Looking for operator calls containing “grab_image”.

6.7 Find/Replace Dialog 73

Figure 6.8: Finding all occurrences of the search text.

Figure 6.9: Replacing operator calls.

Click Find until the desired line is found. Afterwards, click Replace to replace all occurrences of the search text
in the matched line. The next matching line is highlighted automatically.

Click Replace All to replace all occurrences of the search text in the specified scope. We recommend doing a
Find All beforehand to estimate the extent of this operation.

Replacing Operator Calls

You can replace one operator or procedure call with another. Because different operators very likely have different
parameters, the source parameters have to be mapped to the target parameters beforehand. See figure 6.9 for an
example.

Click Operators to specify the search context. Enter the source operator or procedure name and the target operator
or procedure name. When both names are specified, the parameters of the target operator/procedure are listed at
the bottom of the dialog. For every target parameter you have to select or enter a corresponding source parameter.

Please note that the option Whole Words is always enabled in this mode because only exact matches are valid
when replacing operator calls.

G
U

IR
ef

er
en

ce

74 Graphical User Interface

6.8 Graphics Window

This window displays iconic data: images, regions, and XLDs. You can open several graphics windows. The
active graphics window is shown by in the window’s tool bar.

Figure 6.10 shows an example graphics window which is displaying a color image of a pizza overlaid with
region data (the segmented salami slices). One of the displayed regions is selected (illustrated by the dashed
border). The variable name and index of the selected region is displayed in the title bar.

Figure 6.10: Graphics window displaying a tasty pizza.

Full view

Zoomed in with pixel information

The origin of the image coordinate system is the upper left image corner with the coordinates (0,0). The x values
(column) increase from left to right, the y values (row) increase from top to bottom. When the mouse cursor is
placed inside a graphics window, the coordinates (row, column) and the gray value (or in this case: the RGB values)
at that position are displayed in the status bar (see section 6.3 on page 65). Sometimes, it is desirable to display
this information close to the mouse cursor. This can be achieved by holding down the

�� ��Ctrl key.
Please note this does not work when the zoom in and out tool is selected since pressing

�� ��Ctrl inverts the!
corresponding zoom action.

Figure 6.10 shows the coordinate/color value display after zooming in with the mouse wheel.

Normally, the visible part in the graphics window is based on the most recently displayed image, which is au-
tomatically zoomed so that every pixel of the image is visible. The coordinate system can be changed interac-
tively using the menu Visualization . Set Parameters . Zoom (see Zoom settings (page 79)) or the operator
dev_set_part. Every time an image with another size is displayed, the coordinate system is adapted automati-
cally.

Every HDevelop graphics window has its own visualization parameters. Thus, modifying the parameters (see
Visualization Parameters (page 76)) applies to the currently active graphics window only. The parameter settings
of all other open graphics windows remain unchanged.

Each window has a history that contains all objects and all display parameters that have been displayed or changed
since the most recent clearing or display of an image. This history is used for redrawing the contents of the window.
The history is limited to a maximum number of 30 “redraw actions”, where one redraw action contains all objects
of one displayed variable.

Other output like text or general graphics like disp_line or disp_circle or iconic data that is displayed using
HALCON operators like disp_image or disp_region are not part of the history, and are not redrawn. Only
the object classes image, region, and XLD that are displayed with the HDevelop operator dev_display or by
double-clicking an icon are part of the history.

Additional Information

When opening a graphics window via Visualization . Open Graphics Window... and the window height
and width are set to -1, the window size is set by HDevelop. It is taken from the persistent preferences of HDevelop
(usually the size of the last graphics window in the previous HDevelop session).

6.8.1 Tool Bar 75

6.8.1 Tool Bar

Clear the graphics window and its history.

Switch to select mode. In this mode, you can select regions or XLDs that are displayed in the graphics window.
A selected item is highlighted with a dashed border. If multiple layers of region/XLD data are displayed
in the graphics window, the first click selects the uppermost region/XLD under the mouse cursor. Each
subsequent click at the same position selects the region/XLD below the currently selected item. The variable
name of the selected item is displayed in the title bar of the graphics window for reference.

You can use the select mode to inspect gray value histograms and features of individual regions or XLDs.

In the example image illustrated in figure 6.10 on page 74, the displayed image of a pizza is overlaid with
region data. A single region is selected.

Combined move/zoom tool. Drag the displayed image with the left mouse button to alter the displayed portion.

Magnifying glass. Click into the graphics window to magnify the area at the mouse cursor.

Zoom in. Click the small arrow next to the icon to switch to zoom out.

Zoom out. Click the small arrow next to the icon to switch to zoom in.

Set image size. The value can be selected from the menu attached to the small arrow. Additionally, the resizing
behavior can be selected.

The following values for image scaling are available:

• Fit

Scales the image to completely fill the graphics window.

• 400 %, 200 %, ...

A list of fixed percentages scales the image with respect to its natural size.

• Double

Double the current image size.

• Half

Half the current image size.

• Aspect Ratio 1:1

Scales down the image size, so that its aspect ratio is maintained.

You can also change the size of the graphics window, for example, by “gripping” the window border with
the mouse. Then you can resize the window by dragging its border. After this size modification the window
content is redisplayed, depending on the chosen resize mode.

The following modes to control the resizing behavior of the image are available:

• Full Stretch

The visible image part remains constant. The zoom levels are adapted to fully fit the previous view
into the new window size. The aspect ratio of that image part might be skewed.

This is the classic mode. Graphics windows that are opened via operator dev_open_window will be
opened as floating windows using the “Full Stretch” mode for maximum backwards compatibility.

• Keep Aspect Ratio

The zoom level is changed to preserve the previous aspect ratio. The visible image part can change in
one axis as a result of the resize operation.

This is the default mode. You can change the default mode under Edit . Preferences . General
Options.

• No Stretch

The zoom level remains fixed. Thus, resizing the window will show a correspondingly larger or smaller
portion of the image.

G
U

IR
ef

er
en

ce

76 Graphical User Interface

Set window size. Clicking this icon sets the window size to the shown value. The value can be selected from the
menu attached to the small arrow. Double and Half change the size to half and double its current window
size, respectively. Aspect Ratio 1:1 scales down the current window size, so that the aspect ratio of the
displayed image is maintained.

Draw ROIs and XLDs interactively; see section 6.19 on page 154.

Toggle 3D plot mode; see below (page 80).

Active graphics window.

Non-active graphics window. Click the icon to activate the corresponding graphics window. Only one graphics
window can be active at a time.

If you want to specify display parameters for a window, you can select the menu item Visualization in the
menu. Here you can set the appropriate parameters by clicking the desired item (see section 6.1.4 on page 56).
The parameters you have set this way are used for the active window. The effects of the new parameters will be
applied directly to the last object of the window history and alter its parameters only.

6.8.2 Visualization Parameters

Click Set Parameters (via the context menu or the menu Visualization) to open the Visualization

Parameters. This dialog allows convenient access to the visualization settings of the active graphics window.
Most of the settings are also available as individual menu entries in the menu Visualization but some more
advanced settings are only provided in this dialog. An interactive preview is provided, which visualizes the current
settings.

Select Graphics Window (only with multiple graphics windows)

Each graphics window keeps its own private set of visualization settings. When multiple graphics windows
are opened in the current session, you can switch between the settings of the different graphics windows by
selecting the corresponding window handle magic value.

Figure 6.11: Visualization Parameters with multiple graphics windows.

Update This check box corresponds to the setting of Menu Visualization . Apply Changes Immediately.
If it is checked, every change of a parameter will immediately lead to a redisplay of the image, regions, or
XLD in the graphics window. Otherwise, the parameters become active for the next display of an object
(double-click an icon or execution of an operator).

Reset Reset to the visualization settings defined in the Preferences (page 111).

Use settings for new windows Make the current settings also the default settings for new graphics windows.

6.8.2 Visualization Parameters 77

6.8.2.1 Pen settings

The pen settings specify the drawing mode, filled or outlined, the shape, the line width, and the colors of regions
and XLDs.

Figure 6.12: Pen settings.

Predefined colors

Color sets

Add/remove user-defined color

For regions the draw mode can be set to filled (item fill) or outlined (item margin).

The parameter Shape, default is original specifies the presentation shape for regions. You can display not only
the region’s original shape but also its enclosing rectangle or its enclosing circle, etc.

The setting of Line Width applies to XLDs and regions in draw mode margin.

The color of the regions/XLDs can be set to one of the named colors. If you select one of the color sets, each region
or XLD will be displayed in an alternating color from a set of 3, 6, or 12 colors. This visualizes the connectivity
of different regions in the graphics window.

Click the “add” button to define additional colors. Colors are specified by hue, saturation, value, or by giving the
red, green and blue values (see figure 6.13). User-defined colors are added to the list of named colors. They can be
removed by selecting them and clicking the “remove” button.

You can also define your own custom color sets: Add selected colors to the list of custom colors by clicking the
“right” button, or remove them by clicking the “left” button. The check box next to Custom colors: specifies if
the custom color set is used.

User-defined colors and custom color sets are discarded when you quit HDevelop. If you want them to be perma-
nent, you will have to define them in the preferences dialog (see section 6.16.13 on page 124).

The pen settings are also available from the corresponding menu entries in the menu Visualization. A descrip-
tion of the functionality is provided there. The preview shows the current settings, which is helpful if the active
graphics window does not contain any regions or XLDs.

• “Draw”, see also section 6.4 on page 56

• “Colored”, see also section 6.4 on page 56

• “Color”, see also section 6.4 on page 56

G
U

IR
ef

er
en

ce

78 Graphical User Interface

Figure 6.13: Defining a new color.

Figure 6.14: Custom color set.

• “Shape”, see also section 6.1.4 on page 58

• “Line Width”, see also section 6.1.4 on page 58

6.8.2.2 LUT settings

Using LUT you are able to load different look-up tables for visualization. With the help of a false color presentation
you often get a better impression of the gray values of an image. In the case of a true color display, the image has
to be redisplayed due to the missing support of a look-up table in the graphics hardware. For color images only the
gray look-up tables can be used, which change each channel (separately) with the same table.

See the description of the menu entry “Lut” in section 6.1.4 on page 58.

6.8.3 Context Menu 79

6.8.2.3 Paint settings

Here, you can select between two graphical image presentations. In the default mode the image is displayed
unmodified. In the 3d_plot mode, the gray values of the image are taken as height information: The greater the
gray value, the higher the resulting image point. See figure 6.16 for an illustration of the different modes. Further
information can be found at the description of the operators dev_set_paint and set_paint.

default Display the image unmodified.

3d_plot Display a 3D plot using OpenGL which can interactively be modified in the graphics window. This
mode can also be enabled from the tool bar of the graphics window. See section 6.8 on page 74.

6.8.2.4 Pixel Grid settings

This tab card lets you set a Pixel Grid to easier visualize the pixels, when zooming in. You cannot configure the
Pixel Grid within HDevelop using the operator set_window_param.

6.8.2.5 Zoom settings

See also: dev_set_part.

As opposed to the mouse-based zoom functionality that is available in the tool bar of the graphics window, the tab
card Zoom is parameterized. You can specify the bounding box of the visible area of an image, or set the center
position.

This tab card specifies which part of an image, region, XLD, or other graphic item is going to be displayed. The
four text fields of Set part specify the coordinate system. Upper Left Corner defines the pixel which will be
displayed at the upper left corner of the window. Lower Right Corner defines the pixel which will be displayed
at the lower right side of the window.

Below the coordinates of the rectangle, you can specify its center.

The buttons Zoom Out and Zoom In activate a zooming with factor 0.5 or 2, respectively.

To get the image’s full view back on your graphics window, click the button Reset.

The button Aspect adjusts the parameters so that the aspect ratio of the image is maintained.

6.8.3 Context Menu

The context menu can be enabled/disabled from the preferences (page 124).

The entries of the context menu are a subset of the menu Visualization (page 56). Graphics windows at-
tached to the canvas contain the additional context menu entry Canvas Options. For more information, see
section 6.4.1 on page 66.

Figure 6.15: Visualization Parameters: LUT settings.

G
U

IR
ef

er
en

ce

80 Graphical User Interface

default 3d_plot (texture) 3d_plot (shaded)

3d_plot (hidden_lines) 3d_plot (contour_lines)

Figure 6.16: Comparison of the different paint settings.

Figure 6.17: Pixel Grid settings.

6.8.4 3D Plot Mode

Clicking activates an interactive 3D plot mode. It displays meaningful information for height field images, such
as images that encode height information as gray values. The greater the gray value, the higher the corresponding
image point. Figure 6.19 shows a height field image of a solder ball and the corresponding 3D plot .

The 3D plot mode uses OpenGL and benefits from hardware acceleration.

Using the mouse you can alter the view of the 3D image (select mode must be active for this to work, click in
the tool bar):

• Drag the image to rotate the view.

• Hold
�� ��Shift and drag the image up and down to zoom out and in, respectively. Alternatively, use the mouse

wheel.

• Hold
�� ��Ctrl and drag the image to translate the view.

There are four different rendering methods (texture, shaded, hidden_lines, and contour_lines) which can be selected
from the drop-down menu in the tool bar. See set_paint for detailed information about the different methods.
The display quality can be fine-tuned in the tool bar of the graphics window or in the visualization parameters
of the graphics window (right-click into the graphics window, select Set Parameters, and open the tab card
Paint).

Mode sets the rendering mode just like the drop-down menu in the graphics window.

Plot Quality allows setting the rendering quality in four steps. On systems without proper display hardware
acceleration a lower quality should be selected to speed up the display.

6.8.5 Special Keyboard Shortcuts 81

Figure 6.18: Visualization Parameters: Zoom settings.

Figure 6.19: Default vs. 3D plot mode.

Default image display

3D plot mode

Step sets the level of detail. In general, the lower the step value, the higher the level of detail. However, if the
rendering mode is set to contour_lines, increasing the step value increases the level of detail.

Display Axes If this is enabled, the axes of the 3D coordinate system are displayed in the 3D view.

Display Grid If this is enabled, the “floor” of the 3D plot is painted as a grid.

See also section 6.8.2.3 on page 79 for the other paint modes that can be selected in this window.

6.8.5 Special Keyboard Shortcuts�� ��Left, Right, Up, Down move mouse cursor 1 pixel�� ��Alt+Left, Right, Up, Down move mouse cursor 10 pixels�� ��Ctrl+Left, Right, Up, Down pan image 1 pixel

If there is at least one docked graphics window, all floating graphics windows are closed with
�� ��F2 . This shortcut

also works in the main window.

More keyboard functions of the graphics window are listed in appendix D.2 on page 327.

G
U

IR
ef

er
en

ce

82 Graphical User Interface

Figure 6.20: 3D plot mode settings.

Visualization parameters

Tool bar

Mode

Quality

Step

Axes

Grid

6.9 Help Window

The help window provides access to HALCON’s online documentation. The window is split into two areas: On
the left, navigational panels are available as tab cards. They are described below. Please note that you can press the�� ��Up and

�� ��Down keys in the navigational panels to select the previous and the next entry, respectively. This allows
you to examine, for example, search results quickly. The main area displays the actual hypertext content. The size
of the two parts of the help window can be adjusted by dragging the dividing line.

Parts of the documentation are available in PDF format. The help window does not display these files itself but
launches the default viewer when a PDF link is being followed. If a link to a PDF file appears in the navigation
(either as the result of a full-text search or from the selection of index keywords), it will be marked by a PDF icon.
A single click will select the entry and display a link to the file in the contents area. A double-click will open
the corresponding file in the external viewer. This way, you can quickly browse the search or index results in the
navigation without accidentally running the PDF viewer.

Contents

This tab card presents the chapters and sections of the online documentation as a hierarchical tree. Click a node of
the tree to display the associated document. See figure 6.21 for an example.

6.9 Help Window 83

Operators

This tab card lists all operators in alphabetical order. Click an operator name to display the corresponding page
from the Reference Manual. Enter any name into the text field Find to show only operators matching that name.

Search

Enter a search query into the text field, and click Find to start a full-text search. The check boxes below the text
field indicate the search scope. For example, to make sure only HTML matches are displayed, deselect the check
box PDF. The search result is displayed below the query. The rank (in percent) indicates how well each found
document matches the query.

The query can consist of one or multiple words. HDevelop will find all documents that contain any of the specified
words.

To search for a phrase, enclose it in double quotes:

"radiometric calibration"

Precede all mandatory words with a plus sign (+). For example, to find all documents that contain filter and gauss,
enter:

+filter +gauss

You can exclude specific words from your search result. To find all documents that say anything about filters except
Gaussian filters, enter:

filter -gauss

Figure 6.21: Help window with the contents tab card.

G
U

IR
ef

er
en

ce

84 Graphical User Interface

Index

This tab card provides access to HALCON operators and relevant sections of the documentation through index
entries. The list of index entries can be filtered by entering a string into the text field Find. If you enter multiple
words, only index entries matching all the words are displayed.

When you select index entries from the list, the related operator names and links to the corresponding parts of the
documentation are displayed below the index entries. The subtopics can be navigated using

�� ��Ctrl+Up and
�� ��Ctrl+Down

to select the previous and the next match, respectively.

Bookmarks

This tab card lists all user-defined bookmarks. You can add the currently displayed document to the list by clicking
the button Add. To remove a bookmark from the list, select it and click the button Delete.

Help Window Actions

Action Shortcut Description
Locate page

�� ��Ctrl+L Display the location of the current page in
the tree of the contents tab.

Back
�� ��Alt+Left Go back in the browse history.

Forward
�� ��Alt+Right Go forward in the browse history.

Home
�� ��Alt+Home Go to the starting page of the HALCON

Reference Manual.
Bookmark

�� ��Ctrl+D Add the currently displayed document to
the tab card Bookmarks.

Insert operator

into program

�� ��Alt+Return or�� ��Alt+Enter

If the currently displayed document is the
reference page of a HALCON operator, en-
ter this operator into the operator window.

Print...
�� ��Ctrl+P Open the operating system dependent

printer selection dialog to print the cur-
rently displayed page.

Increase Zoom

Factor

�� ��Ctrl++ Increase the font size of the help window.

Decrease Zoom

Factor

�� ��Ctrl+- Decrease the font size of the help window.

Reset to normal

size

�� ��Ctrl+0 Reset to normal size

Find
�� ��Ctrl+F Enter a word or substring to find it in the

currently displayed document. The first
match is highlighted as you type. If no
match is found, the text field blinks shortly.
You can use the cursor keys (down and up)
to highlight the next match or the previous
match, respectively. Alternatively, you can
use the following two buttons.

Next
�� ��Down Highlight the next match.

Previous
�� ��Up Highlight the previous match.

Next Link
�� ��Tab Highlight the next link on current page.

Next Link
�� ��Shift+Tab Highlight the previous link on current

page.
Jump to Link

�� ��Return Jump to the highlighted link.

6.10 OCR Training File Browser 85

6.10 OCR Training File Browser

Selecting this entry opens a tool for inspecting and modifying training files. With this tool, you can for example,
eliminate errors made in the teaching process, for example, if a sample has been assigned to a wrong symbol
(please follow the links for a definition of the terms symbol (page 232) and sample (page 232)).

This tool is a useful addition to the OCR Assistant (page 231) but can also be used independently for any OCR
application. It can be opened either via the corresponding toolbar button, from within the OCR assistant (page
231) or via the drop-down menu Visualization . Tools . OCR Training File Browser.

Note that if the OCR Training File Browser is used in combination with the OCR Assistant (page 231), the samples
are displayed inverted if Light-On-Dark has been chosen as Symbol Appearance within the assistant. This has
an effect on the zoomed sample visualization in the lower left window as well as the thumbnail view the right
window.

The following sections will introduce you to the OCR Training File Browser by

• providing an overview over the different windows within the Training File Browser,

• explaining typical steps of using the tool in an application,

• giving an overview over all possible actions (page 87) within the training file browser.

6.10.1 Windows of the Training File Browser

The OCR Training File Browser is composed of three windows (see figure 6.22). The upper left window lists
training files and symbols and is described in the section ’Training File Window’. Underneath this window, the
’Zoomed Sample Window’ allows you to view the magnified image of a selected sample. The ’Sample Inspection
Window’ on the right lists details for selected samples to inspect the training results.

Figure 6.22: The OCR Training File Browser.

Zoomed sample window

Training file window

Sample inspection window

G
U

IR
ef

er
en

ce

86 Graphical User Interface

6.10.1.1 Training File Window

This window of the OCR Training File Browser enables you to view and edit training files (page 87) and symbols
(page 87).

6.10.1.2 Zoomed Sample Window

This window displays the symbol that is selected in the Sample Inspection Window. If a symbol has been selected
in the Training File Window, the first sample is displayed by default.

6.10.1.3 Sample Inspection Window

The Sample Inspection Window enables you to view and edit samples (page 88). It displays a table containing the
following information about each sample that belongs to a symbol or a training file that is selected in the Training
File Window.

The columns show the following:

• Image: iconic sample

• Symbol Name: class to which the sample was assigned

• Width: width of the iconic sample (in pixels)

• Height: height of the iconic sample (in pixels)

• Generated: whether the sample is a generated variation (page 89) or not

• Read Symbol: result of reading the sample with the selected OCR classifier

• Confidence: a measure for the reliability of the read symbol (0: no confidence, 1: highest confidence)

• Correct: whether a sample has been read correctly. true means that the values of Symbol and Read

Symbol are identical and false means that those values differ. If the sample has not been classified yet, the
value stays true.

6.10.2 Steps for Working With the OCR Training File Browser

This section quickly guides you through a possible application workflow with the OCR Training File Browser.
More detailed information on the functionality of the OCR Training File Browser can be read in the sections
corresponding to each of the windows within the OCR Training File Browser.

1. Open the Training File Browser either via the corresponding toolbar button or from the OCR Classifier

tab within the OCR Assistant (page 231).

2. Load an existing training file or create a new training file via the corresponding toolbar buttons or the
corresponding entries in the drop-down menu File. If several training files should be used or inspected, all
of them can be loaded into the OCR Training File Browser.

3. If required, it is possible to add samples to the training file with the training file functionality of the OCR
Assistant (page 231) if required.

4. Choose a classifier via the drop-down menu Classifier . Load Classifier to classify your samples.
If you have an own or previously trained classifier, you can load it. Otherwise one of the trained OCR
classifiers provided by HALCON can be selected.

5. Inspect and/or edit the contents of training files. This can include adding new samples, deleting samples,
combining existing samples for a new training file or adding sample variations (page 89) as well as checking
for classification problems. Use the Training File Window to edit the training file and the Sample Inspection
Window to inspect and edit samples.

6. Save changes, for example, via File . Save Training File.

6.10.3 Actions Within the Training File Browser 87

7. Use the training file within an OCR application or continue to prepare an application with the OCR assistant
(page 231).

Note that all actions can be undone or redone by selecting Undo or Redo in the menu Edit to reverse or repeat
changes, respectively.

6.10.3 Actions Within the Training File Browser

6.10.3.1 Training Files

The Training File Window (page 86) provides the following options for editing training files:

• Open/Close training files: When opening the OCR Training File Browser via the OCR Assistant (page 231),
the current training file is automatically loaded. Otherwise, training files can be loaded or closed via the
corresponding entries in the menu item File or via the corresponding toolbar buttons.

• Create training files: Training files can be created via the entry New Training File in the menu File or
via the corresponding toolbar button.

6.10.3.2 Symbols

The Training File Window (page 86) provides the following options for editing symbols:

• Add a symbol
To add a new symbol to a training file, either

• press the toolbar button Add Symbol Name or

• select the menu entry Edit . Add Symbol Name.

• Delete a symbol
Select the symbol you want to delete and either

• press
�� ��Del on your keyboard or

• select the menu entry Edit . Delete.

• Rename a symbol
To assign the samples to another symbol, just edit the symbol name. This action is equal to moving the
symbol (and therefore all samples that are assigned to this symbol) via drag and drop to another symbol.
Note that it is also possible to assign single samples to a new symbol. To learn more about assigning samples
to a new symbol class, read the information about modifying samples in the paragraph ’Improve your training
file’ in the section Sample Inspection Window (page 86).

• Copy a symbol
A symbol and all samples that are assigned to this symbol can be copied to another training file. To copy and
paste a symbol, either

• drag and drop the symbol while pressing
�� ��Shift or

• press
�� ��Ctrl+C followed by

�� ��Ctrl+V , or

• select the menu entry Edit . Copy followed by Edit . Paste.

• Move a symbol
A symbol can also be moved via drag and drop

• to another symbol in the same training file,

• to another symbol in a different training file, or

• it can also be added to a different training file by moving it there.

Moving a symbol (and therefore all samples that are assigned to this symbol) to another symbol is equal to
assigning a new symbol name explicitely.

G
U

IR
ef

er
en

ce

88 Graphical User Interface

6.10.3.3 Samples

The Sample Inspection Window (page 86) provides the following options for viewing and editing samples:

Get an Overview of the Samples

Use the sorting mechanisms to get an overview over the samples displayed in this window.

• You can also sort the results within the Sample Inspection Window in ascending or descending order. To
do this, click the feature that should be used for sorting (for example, Width or Symbol Name) or choose a
sorting order in the menu View to sort the list. Note that this feature is only available for up to 1000 displayed
elements.

• Enable the checkbox Display only incorrectly classified samples to filter the information dis-
played for samples that were not classified correctly.

• Choose between two general viewing options: Detailed View or Thumbnail. Select those viewing options
either via the corresponding toolbar buttons or via the menu items of the menu View. Detailed View lists
out all the symbol characteristics explained above, whereas Thumbnail provides a quick overview over the
samples just showing a thumbnail image of each symbol and the symbol that was read.

• If you click a sample, its zoomed image is displayed in the lower left corner of the OCR Training File Browser.

• Directly view new samples that were saved to the training file via the OCR assistant (page 231).

Edit the Samples

• Copy a sample
Select one or more samples in the Sample Inspection Window (page 86). In the Training File Window (page
86), they can then be copied to

• another symbol in the same training file or

• another symbol in a different training file.

To copy and paste a sample, either

• drag and drop the sample while pressing
�� ��Shift ,

• press
�� ��Ctrl+C followed by

�� ��Ctrl+V , or

• select the menu entry Edit . Copy, followed by Edit . Paste.

• Move a sample
Select one or more samples in the Sample Inspection Window (page 86). They can then be moved in the
Training File Window (page 86) via drag and drop to

• another symbol in the same training file or to

• another symbol in a different training file

• Delete a sample
Select one or more samples in the Sample Inspection Window (page 86). They can then be deleted

• by pressing
�� ��Del on your keyboard or

• via the menu entry Edit . Delete.

Note that you can also add variations for samples via the Generate Sample Variations dialog that can be
opened via the corresponding toolbar button.

Check Samples for Correct Classification

The following actions describe how to improve the quality of a training file:

• Sort the samples by Correctness to see whether the correct symbol class was assigned. If Correctness is
true, the value of Read Symbol is identical to the value of Symbol and thus the correct class was assigned.
Otherwise the column is marked in red so that samples that do not belong to the symbol can easily be
detected.

6.10.3 Actions Within the Training File Browser 89

• Use the checkbox Display only incorrectly classified samples to view only samples that were
classified incorrectly.

• Sort samples by Confidence, as this may provide a hint to classification problems.

• Edit Symbol Name to assign a sample to the correct symbol class if necessary. (This action is equal to
moving a sample via drag and drop to another symbol in the Training File Window (page 86).)

6.10.3.4 Generating Sample Variations

Figure 6.23: The Generate Sample Variations dialog.

The best classification results are achieved if the OCR font is trained using real data from the target application.
This can however be time-consuming. To speed up the creation of a large number of different samples per symbol,
it is possible to vary existing samples.

To add variations for certain samples, select either

• one sample in the Sample Inspection Window (page 86) to generate variations for this sample or

• a certain symbol in the Training File Window (page 86) to generate variations for all samples that are
assigned to that symbol, or

• the whole training file can be selected in the tree within the Training File Window (page 86) to generate
variations for all samples within this training file.

Then open the Generate Sample Variations dialog either via the corresponding toolbar button or via the Edit
menu.

This dialog allows you to select several types of variations, depending on what is required for the application. In
general, we recommend using as many samples as possible. So, if you are in doubt whether a variation type applies
or not, you should select it.

The following types of variations can be selected:

• Rotation (4 variations for each selected sample)

• Noise (4 variations for each selected sample)

• Stroke Width (8 variations for each selected sample)

• Slant (4 variations for each selected sample)

• Radial Deformation (9 variations for each selected sample)

• Local Deformation (20 variations for each selected sample)

G
U

IR
ef

er
en

ce

90 Graphical User Interface

Figure 6.24: Selecting an operator after typing select_.

The OK button starts the generation of the new samples. Note that the generation might take some time if lots of
variations are selected for a large number of samples. A progress bar shows how far the generation has proceeded.
The generated samples can subsequently be viewed and edited in the Sample Inspection Window (page 86) where
they are marked with true in the Generated column.

Note that once the training file is saved, the generated samples cannot be recognized as generated ones any more
and therefore the Generated column will show false even for a sample that has been generated.

6.11 Operator Window

This window is used to edit and display an operator or procedure call with all its parameters. Here you will obtain
information about the number of the parameters of the operator or procedure, the parameter types, and parameter
values. You can modify the parameter values according to your image processing tasks. For this you can use the
values proposed by HDevelop or specify your own values.

The operator window consists of the following four parts:

• At the top you find the operator name field, with which you can select operators or procedures.

• The large area below the operator name field is called the parameter display; it is used to edit the parameters
of an operator or procedure.

• The section labeled Advanced Parallelization Options allows you to call operators or procedures as
a subthread (see section 8.11.1 on page 283).

• The row of buttons at the bottom allows you to control the parameter display.

6.11.1 Operator Name Field 91

6.11.1 Operator Name Field

The operator name field allows you to select operators or procedures by entering (part of) their name. After pressing�� ��Return or pressing the button of the combo box, the system is looking for all operators or procedures that contain
the entered name. The order of the listed result is as follows: Operators and procedures whose names begin with
the given substring are listed first, followed by all operators and procedures that contain the substring elsewhere.
Both parts of the list are sorted in alphabetical order.

If there is an unambiguous search result, the parameters are displayed immediately in the operator window. If there
are several matching results, a combo box opens and displays all operators or procedures containing the specified
substring. By clicking the left mouse button you select one operator and the combo box disappears. Now, the
operator’s parameters are shown in the operator window.

The short description of the selected operator is displayed in the status bar. The operator name is displayed in the
window title of the operator window.

6.11.2 Parameter Display

The parameter display is the main part of the operator window. If you have selected an operator or procedure call,
HDevelop displays its interface, with the name, value, and semantic type of each parameter.

You can switch between a one-column (default) or two-column layout of the parameter display. In the two-
column layout, the iconic parameters are shown on the left and the control parameters on the right.
In the following description, “column” refers to the order of the entries, which is independent of the layout.

• In the first column of the parameter display the parameter types are indicated by icons. Note that icons are
not repeated if a parameter is of the same type as its predecessor.

• In the second column of the operator window you find the parameter names.

• The third column consists of the text fields, which contain variable names in case of iconic and control
output parameters and expressions in case of control input parameters. If you want to change the suggestions
offered by the system (variable names or default values), you can do so either manually or by clicking the
arrow button connected with the respective text field. This opens a list containing a selection of already
defined variables and other reasonable values from the operator knowledge base. By clicking the appropriate
item, you set the text field and the list disappears.

For the operators open_framegrabber, set_framegrabber_param, and get_framegrabber_param, the
value list of certain parameters is dynamic: It depends on the selected image acquisition interface. An
even more reasonable parameter suggestion is given if the corresponding handle is opened. If this dynamic
behavior is undesired, it can be disabled in the preferences; see section 6.16.12 on page 122.

This column can also contain action buttons for special semantic types, for example, a button to browse the
file system for the parameters that expect a file name.

• The fourth column indicates the parameter’s default semantic type and, optionally, its data type in parenthe-
ses.

Please refer to the following rules on how parameters obtain their values and how you can specify them:

Iconic input parameters Possible inputs for these parameters are iconic variables of the corresponding type. If
there is no need to execute the operator or procedure call immediately, you can specify new variable names,
meaning, names, that do not already exist in the variable window, but will be instantiated later by adding
further operators or procedure calls to the program body. In any case, you have to specify iconic parameters
exclusively with variable names. It is not possible to use expressions.

Iconic output parameters These parameters contain default variables, which have the same names as the param-
eters themselves. If a variable with the same name as the output parameter is already instantiated, a number
is added to the name to make it unique. Because the parameter names characterize the computed result very
well, you can adopt these default names in many cases. Besides this, you are free to choose arbitrary names
either by yourself or by opening the list (see above). If you use a variable that already has a value, this value
is overwritten with the new results. It is possible to specify a variable both in an input and output position.

G
U

IR
ef

er
en

ce

92 Graphical User Interface

Figure 6.25: Specifying parameters for the operator select_shape.

Control input parameters These parameters normally possess a default value. As an alternative, you can use the
text field’s button to open a combo box and to select a suggested value. In addition, this combo box contains
a list of variables that contain values of the required type. A restriction of proposed variables is especially
used for parameters that contain data like file, image acquisition, or OCR handles.

Input control parameters may contain constants, variables, and expressions. Common types are integer
numbers (integer), floating-point numbers (real), boolean values (true and false), character strings
(string), and handles (handle).

You can also specify multiple values of these types at once by using tuples. This is an array of values,
separated by commas and enclosed in square brackets. You can build up expressions with these values. You
can use expressions in HDevelop similar to the use of expressions in C or in Pascal. You will find a detailed
description in section 8.5 on page 253.

Control output parameters: These parameters are handled in the same way as iconic output parameters. Their
defaults are named as their parameter names. Other possibilities to obtain a control output variable name
are either using the combo box or specifying variable names manually. You cannot use any expressions for
these parameters.

After discussing what can be input for different parameters, it is explained how this is done. Nevertheless, you
have to keep in mind that you need to modify a parameter only if it contains no values or if you are not satisfied
with the suggested default values.

Text input: Give the input focus to a parameter field by clicking into it. Now, you can input numbers, strings,
expressions, or variables. There are some editing functions to help you doing input:

�� ��Backspace deletes the
character to the left and

�� ��Delete deletes the one to the right. You can also select a sequence of characters in
the text field using the mouse or holding

�� ��Shift and using the cursor keys. If there is a succeeding input, the
marked region is going to be deleted first and afterwards the characters are going to be written in the text
field. See appendix D on page 327 for a summary of the keyboard mappings.

Combo box selection: Using this input method, you can obtain rapid settings of variables and constants. To do
so, you have to click the button on the text field’s right side. A combo box is opened, in which you can select
an item. Thus, you are able to choose a certain variable or value without risking erroneous typing. Previous

6.11.2 Parameter Display 93

entries are deleted. Afterwards, the combo box is closed. If there are no variables or appropriate values, the
combo box remains closed.

G
U

IR
ef

er
en

ce

94 Graphical User Interface

6.11.3 Control Buttons

Below the parameter display, you find five buttons that comprise the following functions:

OK Click OK to execute the operator or procedure call with the specified parameters. The execution mode depends
on the position of the PC: If the PC is placed above the insertion position, the system executes the program
from the PC until the insertion position first. Then, the operator or procedure call that has been edited in the
operator window is executed. The reason for this is that the parameter values that are used as input values
for the currently edited operator or procedure call have to be calculated. If the PC is placed at or after the
insertion position, only the currently edited operator or procedure call is executed.

The operator or procedure call is entered into the program window before it is executed. After the execution,
the PC is positioned on the next executable program line after the edited operator or procedure call.

The computed output parameter values are displayed in the variable window. Iconic variables are shown
in the current graphics window if you did not disable this option (compare section section 6.16.14 on page
124). Afterwards, the operator window is cleared. If you did not specify all parameters or if you used wrong
values, an error dialog is raised and the execution is canceled. The operator window then remains open to
allow appropriate changes.

Enter / Replace Click Enter and the currently edited operator or procedure call is transferred into the program
window without being executed. When editing existing program lines (through double-clicking in the pro-
gram window, see section 6.17.2 on page 127), the button label changes to Replace. When clicked, the
original program line is replaced.

Apply Click Apply, the operator is executed with the specified parameters, but not entered into or changed in
the program. This enables you to determine the optimum parameters rapidly since the operator dialog
remains open, and hence you can change parameters quickly. Note that this functionality is not available for
procedure calls.

Unlike the button OK, only the single line you edit or enter is executed, no matter where the PC is located.
Thus, you have to ensure that all the input variables contain meaningful values. By clicking Apply, the
corresponding output variables are changed or created, if necessary, to allow you to inspect their values.

Cancel Click Cancel to clear the contents of the operator window. Thus, there are neither changes in the program
nor in any variables.

Help Click Help to invoke the online help for the selected operator or procedure. For this the system activates the
online help window (see Help Window).

6.12 Output Console Window

The output console window contains a log of the most recent messages. This includes all messages displayed on
the status bar as well as HALCON low-level errors. Therefore, HALCON low-level errors can now be logged
without an interruption of the program execution.

The window can also be opened by double-clicking the message area of the status bar. See figure 6.26 for an
example.

The logged messages are grouped into the following categories:

(Info) Info events related to the program execution, the just-in-time (JIT (page 48)) compiler, and file opera-
tions.

(Warning) Warning events related to the program execution, the just-in-time (JIT (page 48)) compiler, file
operations, HALCON low-level errors, and invalid program lines.

(Error) Program execution errors, HALCON errors, and internal errors.

(Exception) Exception events.

The tool bar includes the following action buttons:

6.13 Plot Windows 95

Clear the output console.

Save the log messages as a plain text file (.txt or .csv). Each line contains a log message, and the columns
are separated by tabs.

Copy the selected log messages to the system clipboard.

Open the preferences window of the output console. You can specify the maximum number of log messages
that are kept in the console. The check boxes toggle the visibility of the corresponding messages.

6.13 Plot Windows

HDevelop uses plot windows for the visualization of data in several areas. Differences specific to a given task are
described in the corresponding sections listed below:

• Inspection of 1D functions and tuple data (section 6.22.7 on page 170).

• Visualization of gray value histograms (section 6.13.2 on page 98).

• Visualization of line profiles (section 6.13.5 on page 106).

• Visualization of feature histograms (section 6.13.3 on page 103).

Figure 6.26: Output Console.

G
U

IR
ef

er
en

ce

96 Graphical User Interface

Figure 6.27: Example plot window.

Plot area

x-axis

Axis limits

y-axis

• Visualization of fuzzy measure graphs (section 7.4.5.2 on page 225).

An example plot window is illustrated in figure 6.27.

6.13.1 Interacting With Plot Windows

6.13.1.1 Mouse-based Operations

The following mouse-based operations are supported to manipulate the plot display:

Operation Description
Mouse wheel on plot area Zoom in and out.�� ��Shift -drag on plot area Zoom into a rectangular region.�� ��Ctrl +mouse wheel Zoom x-axis.�� ��Shift +mouse wheel Zoom y-axis.
Drag plot area Select the visible part of the graph.
Drag on an axis Restrict the movement to the corresponding axis.
Mouse wheel on an axis Zoom in and out on the corresponding axis only.
Drag min/max (4) on an axis Modify the displayed limits of an axis.�� ��Ctrl Hide values temporarily while held.

6.13.1.2 Setting the Plot Bounds Parametrically

The displayed range of the plot window can also be specified parametrically by pressing
�� ��b or selecting from the

context menu.

The Range Mode determines if and how the displayed data range is updated when new data becomes available.

adaptive The displayed data range is automatically adjusted depending on the displayed data.

increasing The displayed data range is allowed to grow if new data becomes available.

user-defined The displayed data range is never adjusted automatically, even when the data changes drastically.

The horizontal and vertical scaling can be set to linear or logarithmic mode independently.

6.13.1 Interacting With Plot Windows 97

Figure 6.28: Plot bounds.

6.13.1.3 Plot Window Context Menus

The following context menu entries are valid for all plot windows. Depending on the plot window type, additional
entries can be available which are described in the corresponding sections.

X-Axis

Action Shortcut Description
Reset Bounds

�� ��w or
�� ��Ctrl+Shift+W Set width to default.

Linear Scale Set x-axis to linear scale.
Logarithmic

Scale

Set x-axis to logarithmic scale.

User-defined

Range

Freeze x range

Increasing Range Let x range grow on demand.
Adaptive Range Let x range grow or shrink on demand.

Y-Axis

Action Shortcut Description
Reset Bounds

�� ��h or
�� ��Ctrl+Shift+H Set height to default.

Linear Scale Set y-axis to linear scale.
Logarithmic

Scale

Set y-axis to logarithmic scale.

User-defined

Range

Freeze y range.

Increasing Range Let y range grow on demand.
Adaptive Range Let y range grow or shrink on demand.

G
U

IR
ef

er
en

ce

98 Graphical User Interface

Plot Area

Action Shortcut Description
Reset Bounds

�� ��r or
�� ��Ctrl+Shift+R Reset width and height to default.

Zoom In Mode
�� ��+ or

�� ��Ctrl+Shift++ Zoom in (both axes).
Zoom Out Mode

�� ��- or
�� ��Ctrl+Shift+- Zoom out (both axes).

Enter Bounds...
�� ��b or

�� ��Ctrl+Shift+B Enter vertical and horizontal bounds para-
metrically (see above (page 96)).

Show Mouse

Position

�� ��p or
�� ��Ctrl+Shift+P Visualize the mouse position with a cross

hair.
Show Function

Value At X

�� ��x or
�� ��Ctrl+Shift+X Display the function value at horizontal

mouse position.
Show Function

Value At Y

�� ��y or
�� ��Ctrl+Shift+Y Display the function value at vertical

mouse position.
Show Background

Grid

�� ��g or
�� ��Ctrl+Shift+G Display grid lines in the background of the

plot area.
Insert Plot Code

for Graphics

Window

�� ��Ctrl+Shift+V Generate code to plot the current view in a
graphics window.

6.13.2 Gray Histogram Window

The gray histogram window is a tool for the inspection of gray value histograms, which can also be used to select
thresholds interactively and to set the range of displayed gray values dynamically. See also: Menu Visualization
. Gray Histogram. When opening the tool, the histogram of the image shown in the active graphics window is
displayed. When the tool is already open, the following means of sending new image data to the tool are available:

• Make another graphics window active or display another image in the active graphics window. Whenever
you do so, the histogram of this image is computed and drawn, and the tool records the graphics window
from which the image was sent (the originating window).

• Select a graphics window number in Input and Output (see below).

• Whenever image data is displayed overlaid with region data in a graphics window, you can click into any of
the segmented regions, and the histogram of the image within that region will be computed and shown. If
you click into a part of the image that is not contained in any of the overlaid regions, the histogram of the
entire image will be displayed.

• The same mechanism is used for regions that have gray value information, for example, image objects created
by reduce_domain or add_channels. Here, the histogram of the image object you click into will be
displayed.

Gray Histogram Display

The y-axis represents the frequency of the gray values. The main part of the tool is the plot area, in which
the histogram of the image is displayed in blue . Images with three channels are displayed in RGB mode by
default. The vertical green and red lines denote the minimum and maximum selected gray value of the histogram,
respectively. They can be dragged with the mouse. The gray values on which the two vertical lines lie are displayed
next to the lines in the same color.

The x-axis below the histogram represents the gray values in the image. For byte images, the range is always
0...255. For all other image types, for example, real images, the x-axis runs from the minimum to the maximum
gray value of the image, and the labeling of the axis is changed accordingly.

The two upward pointing arrows on the x-axis denote the maximum and minimum gray value of the image. The two
rightward pointing arrows on the y-axis denote the maximum and minimum frequency of the displayed histogram.
This data is also displayed in textual form within the Statistics area of the display. The peak of the histogram,
that is, the gray value which occurs most frequently is also displayed in the statistics (see below). For int4, int8, or
real images, the peak value is displayed as a value range in the Statistics. The range of input values is divided
in quantization steps to obtain a meaningful histogram, and, as a consequence, the histogram’s “peak value” can
actually represent a whole range of input values.

6.13.2 Gray Histogram Window 99

Figure 6.29: Gray histogram.

y-axis

Plot area

x-axis

Whenever new image data is evaluated in the gray histogram window, the adaptation of these values depends on
the selected adaptation mode, which can be set independently for horizontal and vertical ranges:

• adaptive

In this mode, the upper and lower boundary of the displayed gray values will always be adapted when a new
image is displayed. The maximum and minimum value for the threshold bars (green and red) are also fixed
to the maximum gray value of the type of image currently displayed.

Note that if you are using 8-bit and 16-bit images in a mixed mode, the histogram will constantly be reset. It
is not possible to display a 16-bit image, set thresholds, then display an 8-bit image and keep the threshold
values of the 16-bit image.

In adaptive mode, the displayed data range depends on the image type:

• int1, byte, direction, and cyclic images automatically use their maximum data range (for example, byte
images use the range 0 to 255).

• int2, uint2, int4, and int8 images use limits that are based on the actual data range but rounded to
powers of two.

• int2 and uint2 images can be forced to an explicit bit range using the set_system parameter
“int2_bits”.

• real images use limits that are based on the actual data range, but rounded to values that are round in
base 10 (for example, 0.1, 0.2, 0.5, or 100, 200, 500).

• increasing

In this mode, only the upper boundary of the displayed gray values will be adapted and it will only increase,
but never decrease. This for instance is useful when first inspecting 8-bit images, but then switching to 16-bit
images. In this situation, the histogram will display the 16-bit gray value range after displaying the first
16-bit image.

In this mode, the minimum and maximum value of the threshold bars are not limited to the currently displayed
image type. The reason is simple: This mode allows you to inspect images of a different data type with the
same threshold values. If the values were always limited, the histogram would “forget” the values like in the
adaptive mode.

G
U

IR
ef

er
en

ce

100 Graphical User Interface

• user-defined

In this mode, the boundaries are not adapted automatically (but can be changed manually). This mode is also
suitable for scenarios with images of mixed data types.

Like in the mode increasing, the minimum and maximum value of the threshold bars are not limited to the
currently displayed image type.

Histogram Options

These controls define the visible area of the histogram and the way it is displayed.

• Quantization: Display the histogram quantized. The bucket size can be specified with the slider or entered
into the spinner box. Click Auto Select to let HDevelop select a suitable bucket size automatically.

• Smoothing: Display the histogram smoothed. The smoothing factor can be specified with the slider or
entered into the spinner box. The check box specifies whether smoothing is applied or not.

Range Selection and Code Generation

See section 6.13.2.2.

Input and Output

Input Window specifies the graphics window of which the gray value histogram is displayed.

Output Window specified the graphics window that is used for the visualization of threshold or scale operations
(see below). The visualization style is specified with the following settings:

• Color (page 56)

• Draw (page 56)

• Line Width (page 58)

Sometimes, it is desirable to suppress the updating of the histogram when new image data is available, for example,
if you want to select thresholds for a gradient image, but want to visualize the original image along with the
segmentation (see below). In that case you can freeze the histogram by unchecking Input Window. The currently
displayed histogram is preserved until Input Window is checked again in which case the histogram will be re-
calculated from the selected graphics window.

6.13.2 Gray Histogram Window 101

6.13.2.1 Context Menus

The common context menu entries are described in section 6.13.1.3 on page 97.

Plot Area

Action Shortcut Description
Fit Data Range

�� ��d or
�� ��Ctrl+Shift+D Set the lower and upper bounds so that the

histogram is displayed in its entirety.
Zoom To

Selection

�� ��s or
�� ��Ctrl+Shift+S Zoom to the range between the green and

red line.
No output Do not process the selected gray values.
Highlight

Selection

Highlight the selected gray values.

Scale Selection Scale the selected gray values.
InsertCode Generate code for the selected operation.

X-Axis

Note that histogram quantization is still performed using equal-sized linear bins if the x-axis is set to logarithmic
scale.

Y-Axis

In logarithmic mode no negative values are permitted when dragging the plot area using the mouse.

6.13.2.2 Interactive Visual Operations

The selected range of gray values can be used for two major purposes: Thresholding (segmentation) and scaling
the gray values. This is illustrated using the images rings/mixed_03.png, and meningg5.png.

threshold

no scale scale

threshold + connection

The setting of Output Window specifies the graphics window that is used to visualize the gray values between the
green line and the red line: You can select the originating window (Input), the active graphics window (Active),
or an arbitrary window ID from the list.

The type of visualization is specified in the table below the histogram. Click the + button to add a new operation
to the table. Click the - button to remove an operation from the table. The column Operation specifies the

G
U

IR
ef

er
en

ce

102 Graphical User Interface

operation that is applied to a selected range of gray values (threshold or scale, see below). To visualize a specific
operation, click the corresponding icon next to the operation .

When a multi-channel image, for example, a RGB color image, is sent to the tool, by default the histogram of the
first channel is displayed. The column Channel lets you select the channel from which to compute the histogram.
For RGB images, Channel can also be set to the special mode RGB which shows a combined histogram of all
three channels.

The columns Min and Max correspond to the position of the green and the red line, respectively. Each operation
can specify its own range of gray values.

+ button

- button

Icon

6.13.2.3 Threshold Operation

The image from which the histogram was computed is segmented with a threshold operation using the selected
minimum and maximum gray value.

With the three combo boxes Color, Draw, and Line Width in the Input and Output section of the window you
can specify how the segmentation results are displayed (see also Colored (page 56), Draw (page 56), and Line

Width (page 58)).

If you want to select threshold parameters for a single image, display the image in the active graphics window
and open the histogram tool. For optimum visualization of the segmentation results, set the visualization color to
a color different from black or white. Set Operation to Threshold and interactively drag the two vertical bars
until you achieve the desired segmentation result. The parameters of the threshold operation can now be read off
the two vertical lines.

There are two possibilities to select threshold parameters displaying the segmentation for an original image, derived
from another image.

You can either display the derived image, open the histogram tool, deselect Input Window, display the original
image, and then select the appropriate thresholds. This way, only one window is needed for the visualization.

Or, you can display the derived image in one graphics window and the original image in another. Activate the first
graphics window image, and make sure Input Window is checked so that the corresponding gray value histogram
is calculated. Afterwards, Input Window can be turned off to prevent the histogram from being updated. In the
gray histogram window set Output Window to the window ID of the second graphics window and select your
thresholds.

Multiple Threshold Operations
If multiple operations are visualized at the same time, the display depends on the combo box below the table of
operations:
If none is selected, the results of the different threshold operations are displayed independently.
If union is selected, the results are combined to a single region.
If intersection is selected, only the common pixels from all results are visualized.

Connected Regions

Clicking Connection displays the connected regions of the selected gray values in the style specified with Color,
Draw, and Line Width.

This display mode is similar to a plain threshold operation. Additionally, it performs a connection operation.
The separate regions can only be distinguished if Color is set to colored 3, colored 6, or colored 12.

6.13.3 Feature Histogram Window 103

Click the button Insert Code to generate HDevelop code that performs the currently visualized threshold opera-
tion(s) in your program. The code is inserted at the IC.

The resulting regions of the threshold (and connection) operation can be used as input to the feature histogram
window or the feature inspection window if the gray histogram window is kept open. These windows are described
in the next sections.

6.13.2.4 Scale Operation

The scale operation maps the gray values between the green line and the red line to the full range (usually 0...255).
See also scale_image.

The gray values of the image are scaled such that the gray value 0 of the scaled image corresponds to the selected
minimum gray value and the gray value 255 to the selected maximum gray value. The combo box Output Window

determines the graphics window, in which the result is displayed. Use this to interactively set a “window” of gray
values that should be displayed with a large dynamic range. Note that, not more than one scale operations can be
visualized in the graphics window at the same time.

Click Insert Code to generate HDevelop code that performs the currently visualized scale operation in your
program. The code is inserted at the IC.

6.13.3 Feature Histogram Window

See also: Menu Visualization . Feature Histogram.

This window provides a tool for the inspection of feature histograms. In contrast to the gray value histogram, this
tool does not inspect individual pixels, but regions or XLDs. For these iconic objects, it displays the distribution
of values of a selected feature, for example, the area of an XLD or the mean gray value of the pixels within a
region. The feature histogram can also be used to select suitable thresholds for the operators select_shape and
select_shape_xld interactively. Similar to the gray histogram tool, the interactive selection can be translated
into generated HDevelop program code.

The default feature selection displays the histogram of the area, of the regions or XLDs that were displayed most
recently in the currently active graphics window. You can select various features in the combo box Feature. For
more information about region features see section 6.13.4.

See figure 6.30. First, all objects (regions) of a certain size (area) are selected. Then, the selection is refined by
adding further restrictions. In this example, the final selection should only include round objects, , regions with a
high roundness feature. The following code would be generated if you clicked the button “Insert Code” in this
example:

select_shape (Connection, SelectedRegions, ['area','roundness'], 'and',
[2900,0.72], [3900,0.79462])

Most parts of the tool are built up similarly to the gray value histogram, which is described in detail in section 6.13.2
on page 98 (Menu Visualization . Gray Histogram). Reading this description beforehand is highly recom-
mended. In the following, we concentrate on points specific to the feature histogram. An important point regards
the “source” of the regions or XLDs: The feature histogram is calculated for the regions or XLDs that were dis-
played most recently in the graphics window. Thus, if you display an image, and there are no regions or XLDs,
the histogram remains “empty”. As soon as you display regions or XLDs on top of an image, the histogram is
calculated. If you display regions or XLDs without an image, you can still calculate feature histograms, but only
for shape features. Please keep in mind that only the most recently displayed regions or XLDs are the source of
the histogram, not all objects currently displayed in the graphics window.

The histogram itself is displayed with the horizontal axis corresponding to the feature values and the vertical axis
corresponding to the frequency of the values, for example, to the number of regions or XLDs with a certain feature
value.

When comparing feature histograms to gray value histograms, you will note a typical difference: Because in most
cases the overall number of regions or XLDs is much smaller than the overall number of pixels, feature histograms
often consist of individual lines, most of them having the height 1. Of course, this effect depends on the selected

G
U

IR
ef

er
en

ce

104 Graphical User Interface

Figure 6.30: Combining different features selections.

Step select regions of similar size

Step restrict the selection to round regions

feature: For features with floating-point values, for example, the orientation, the probability that two regions or
XLDs have the same feature value is very small, in contrast to features with integer values, for example, the number
of holes.

You can influence the calculation of the histogram with the slider Quantization. The selected value is used
to discretize the horizontal axis: Instead of determining the frequency of an “exact” feature value, regions with
feature values falling within discrete intervals are summed. Graphically speaking, the horizontal axis is subdivided
into “bins” with a width equal to the value selected with the slider Quantization.

+ button

- button

Icon next to the operation

You can add additional features using the + button , or remove features using the - button . As with the gray
histogram operations, each selected feature has to be enabled to visualize the selection in the graphics window.

6.13.4 Feature Inspection Window

See also: Menu Visualization . Feature Inspection.

This tool is used for the inspection of shape and gray value features of individual regions and XLDs. It can, be
used to determine thresholds for operators that select regions based on these features, for example, select_shape
or select_gray.

6.13.4 Feature Inspection Window 105

Figure 6.31: Inspection of selected features.

Select

Selected region

Feature value of selected region

Range visualization

The strategy to determine the data from which to compute the features is very similar to that of the gray histogram
inspection window (see section 6.13.2 on page 98). You can display an image or region by double-clicking it in
the variable window or you can select a region or an image which is already displayed by single-clicking it. If
you display or click into an image, the gray value features of the entire image will be calculated. If you click
into a region that is not underlaid with an image, only the shape features of this region will be displayed. If you
click into a region that is underlaid with an image or into a region that has gray value information (for example,
from reduce_domain or add_channels), both the shape and gray value features of that region will be displayed.
Finally, if you have overlaid an image with a region, but click into a part of the image that is outside the region,
only the gray value features of the entire image will be calculated.

Use the “select” tool of the graphics window to select a region or XLD. The selected region or XLD is highlighted
in the graphics window. The corresponding variable name and index are displayed in the title of the feature
inspection window.

The gray value features of a multi-channel image are calculated from all channels independently.

The tree on the left side of the feature inspection window groups the features into categories.

• Region features: This group contains features that describe the selected region, for example, area, center, and
orientation.

• Gray value features: The feature values of this group are calculated from the gray values of the image under
the selected region, for example, minimum and maximum gray value, mean gray value, anisotropy and
entropy.

• XLD features: This group contains features that describe the selected XLD (for example, its dimensions or
shape properties).

You can select the features to be inspected by ticking the corresponding check boxes in the tree. The selected
features are displayed on the right side of the window. For each feature the calculated value of the selected region
or XLD is displayed (or the value for the entire image). The current value is also visualized as a gauge in a value
range that can be set to the desired values. Select Show Minimum/Maximum, which is available in the context menu
of the right side of the window.

See figure 6.31 for an illustration of a feature inspection. The range for the area feature has been set to [2000,
7000]. Individual rings can be inspected by selecting them in the graphics window.

G
U

IR
ef

er
en

ce

106 Graphical User Interface

Moving the mouse pointer over a feature value displays a tool tip. It shows the name and short description of the
HALCON operator used for the calculation of that value. Using the context menu, you can insert the corresponding
operator into the operator window.

6.13.5 Line Profile Window

See also: Menu Visualization . Line Profile.

Selecting this entry opens a tool for the detailed inspection of a gray-value profile of a linear or circular ROI, see
figure 6.32. Using the line profile is helpful in particular for optimizing edge detection in the Measure Assistant
(page 221) or when checking the focus of your camera (see the section ’Focusing Your Camera’ (page 109)).
The displayed line profile of the ROI is described in the section ’Line Profile Display’. Note that the line profile
window is a visualization tool that cannot be used to create any output, like performing changes within the image
or producing code.

Figure 6.32: The Line Profile Window.

When opening the line profile without using the Measure Assistant, nothing is displayed in the line profile until an
ROI is drawn in the graphics window using the corresponding buttons in the line profile window.

6.13.5 Line Profile Window 107

There are various options for linking the line profile to different windows:

• Make another graphics window active, select another window ID in the Input Window drop-down menu, or
display another image in the active graphics window. Whenever you do so, the line profile of the ROI in this
image is computed and visualized, and the tool stores the graphics window from which the image was sent
(the originating window).

• A Measure Assistant can be selected as data source by activating the checkbox Measure Assistant under
Input Window within the line profile window and choosing the correct assistant from the drop-down menu
if several assistants are open at the same time.

• The line profile can be opened from the Measure Assistant window by clicking on the View Line Profile

button on the Edges tab.

6.13.5.1 ROI Menu of the Line Profile Window

If the Measure Assistant (page 219) is not selected as source of an ROI, a new ROI can be created and edited
using the ROI menu buttons above the line profile display. Those buttons allow you to draw either a linear or a
circular ROI, delete all ROIs or view the ROI shape. Once an ROI has been created with the Draw Line or Draw
Circular Arc buttons, those ROI creation buttons are grayed out because the line profile window can only handle
one ROI at a time.

6.13.5.2 Line Profile Display

The main part of the tool is the area in which the gray-value profile of the image along an ROI is displayed in blue.

The horizontal axis represents the length of the ROI in pixels and therefore gives the position of the gray values
along the ROI.

The dynamic parts of the line profile area are the two colored lines, which can be manipulated. The vertical green
and red lines denote the minimum and maximum selected position along the ROI, respectively. Those lines are
also displayed in the active graphics window. Their visualization can be adapted under Output. Another dynamic
part is the vertical coordinate axis, which displays the gray values in the image. For byte images, this ranges from
0 to 255. As it comprises only the gray-value range between darkest and the brightest pixel, these values do not
usually start with 0 and end with 255. For all other image types, for example, real images, the horizontal axis runs
from the minimum to the maximum gray value of the image and the labeling of the axis is changed accordingly.

Initially, the line profile is displayed at full vertical range, for example, up to the peak value. With the buttons to
the left of the line profile display, you can modify the displayed part:

The common interaction with plot windows is described in section 6.13 on page 95.

6.13.5.3 Context Menus

The common context menu entries are described in section 6.13.1.3 on page 97. The context menu entries specific
to the line profile window are listed below:

Plot Area

Action Shortcut Description
Fit Data Range

�� ��d or
�� ��Ctrl+Shift+D Set the lower and upper bounds so that the

line profile is displayed in its entirety.
Zoom To

Selection

�� ��s or
�� ��Ctrl+Shift+S Zoom to the range between the green and

red line.

G
U

IR
ef

er
en

ce

108 Graphical User Interface

6.13.5.4 Line Profile Options

Smoothing: Display the profile smoothed. You can smooth the profile before displaying it by specifying a smooth-
ing factor with the slider in the spinner box and by clicking the checkbox. If smoothing has been applied with the
Measure Assistant (page 219), those values are automatically adopted. The smoothing can then be performed in
the line profile window as well and likewise affects the Measure Assistant’s smoothing (see figure 6.33).

Derivative: Display the derivation of the line profile.

Figure 6.33: Line Profile dialog.

Display and modification of the smoothing via the Measure Assistant

Choosing a data source and options for the line profile

Force minimum line profile width: Reduce the line profile visualization to a minimum width by using the
button .

6.13.5.5 Input and Output

This section lets you choose the source of your image and therefore the source of the ROI. By default, the active
graphics window is chosen into which an ROI can be drawn using the ROI menu of the line profile window. The

6.13.5 Line Profile Window 109

ID of another graphics window can be selected from the drop-down menu. If a Measure Assistant (page 219) is
activated, one assistant can be chosen from the drop down menu or it can be opened by activating the Use Measure

Assistant as Data Source button.

The remaining buttons let you choose the visualization of the marker lines the line profile displays within in your
active ROI. You can select the color and length of your lines as well as their width. Changing those output features
can be necessary to achieve optimum visibility within an image.

6.13.5.6 Statistics

The Statistics section of the line profile window displays the values from the line profile display above. It
includes values for the position (x Value) as well as the gray values. It therefore informs you where interesting
gray values can be found. Those gray values include

• the Peak, which marks the position of the highest gray value,

• the Range, defining the length of the ROI as well as the range of gray values along the ROI.

• Value at Min and Value at Max, defining the position and gray value of the above determined selection
(that was localized with the green and red line) as can also be seen in the active graphics window.

• There are two further values that only concern the gray values: Mean defines the mean gray value while
Deviation is the average deviation.

6.13.5.7 Focusing Your Camera: How to Test Images for Sharpness

When focusing your camera, it might help to take a quick look at the gray-value transitions along a line within the
image to see whether the edges are sharp or still a bit blurry. While sharp images are defined by abrupt changes
between dark and bright gray values, no abrupt changes but rather gray-value transitions can be found in blurry
images (see figure 6.34).

b)

a)

Figure 6.34: a) profile in a sharp image; b) profile in an unsharp image.

G
U

IR
ef

er
en

ce

110 Graphical User Interface

6.14 Properties Dialog

The tab card General displays file properties of the current program, such as file name, path, creation and modi-
fication date, and write permission. It also shows the file size, the number of lines of code, used and unused local
procedures, used external procedures and used protected procedures. This is displayed in figure 6.35.

Figure 6.35: Properties: General (left), Used Modules (right).

The tab card Used Modules lists the HALCON modules used by the current program. Modules marked with
are used. Modules marked with are potentially in use by dynamic licensing. This window allows you to get
an estimate of how many modules your application will need in a runtime license. Please refer to the Installation
Guide, section 5.4.2 on page 29 for more information about modules, runtime licenses, and dynamic licensing. See
figure 6.35 for the corresponding dialog of a 3D object processing example.

Check only used procedures If checked, only used procedures are considered for the evaluation of the used
modules. Otherwise, all procedures are considered.

Copy to Clipboard Copy the names of the used modules to the system clipboard. This way the list can be
easily pasted into other applications.

6.15 Print Dialog

The print dialog is displayed in figure 6.36.

Print Range

Program Complete program including all procedures.

Current Procedure Current procedure and its used procedures.

Selection Highlighted program lines and their used procedures.

External Procedures All external procedures.

Procedure Options

Print Procedures Define whether procedures are printed or not.

• Used Local Procedures: print only used local procedures.

• All Local Procedures: print all local procedures.

6.16 Preferences Dialog 111

Figure 6.36: Print.

• Used External Procedures: also print used external procedures.

Only Procedure Interface If this box is checked, the procedure body is not printed. Instead, only the inter-
face of the procedure is printed.

The bodies of locked procedures (see section 5.6 on page 47) are not printed.

6.16 Preferences Dialog

HDevelop maintains a set of preferences that are persistent between sessions. You can customize the appearance
of the user interface (syntax highlighting, fonts, and language) as well as its behavior, configure the settings of
procedures, and change the default visualization settings of the graphics windows.

Changes to the settings in this dialog are saved automatically without any user intervention. The location of
the generated file depends on the operating system:

Windows: %APPDATA%\MVTec\HDevelop.ini

Linux: $HOME/.hdevelop/MVTec/HDevelop.ini

HDevelop can read additional preferences from another startup file specified with the command line switch
-add_preferences <file>. To load the preferences only from another startup file, start HDevelop with
the command line switch -load_preferences <file>. In both cases the settings will be stored back to
HDevelop.ini when HDevelop is quit. To use a different startup file altogether, start HDevelop with the command
line switch -use_preferences <file>.

Export Using the check boxes you can specify which settings will be saved to the selected file.

Import In the import dialog, you can select a file with previously saved HDevelop preferences (default file exten-
sion: .hdp). This selection of preferences was saved using the menu entry Export. The check boxes allow
you to import groups of settings selectively. They correspond to the categories of the dialog. The runtime
settings are not persistent and can neither be exported nor imported.

Reset Selecting this menu entry resets all preferences (except the window geometry and layout) to the default
settings. If you want to reset the window geometry as well you can start HDevelop with the following
command line switch:

hdevelop -reset_preferences

The preferences dialog contains a list of categories on the left and several related tab cards on the right. The size
of these elements is controlled by a splitter. The available categories of preferences are described in the following
sections.

G
U

IR
ef

er
en

ce

112 Graphical User Interface

6.16.1 User Interface . Program Window

Figure 6.37: User Interface . Program Window.

Font

Specifies the font that is used in the program window.

Indent Size: Specifies the number of spaces an indenting level in the program window accounts for. In HDe-
velop, the bodies of loops and conditionals are indented automatically.

Editor Settings: These settings specify the editing behavior in the program window.

ToolTip Mode:

When the mouse cursor rests on a program line, a tool tip is displayed by default. When placed over an
operator name, the interface of the corresponding operator and its short description are displayed. When
placed over an instantiated iconic variable, an icon is displayed. When placed over the program line column,
warning messages may be displayed, for example, if the used operator is deprecated. This behavior can be
turned off if it disturbs your editing activities.

• Always

Always display a tool tip when the mouse cursor rests on a program line.

• Only on Control key

Display the tool tip only when the
�� ��Ctrl key is pressed.

Autocompletion:

• Advanced

Enables advanced autocompletion in the program window (see section 6.17.2 on page 127).

• show after [ms]:

This value defines the delay before the autocompletion is displayed.

Auto Highlight:

Enables the auto highlight feature which can highlight

• occurrences of the word under the cursor,

• occurrences of the currently selected string,

• matching brackets, and

6.16.2 User Interface . Fonts 113

• matching control structures.

If a matching control structure is highlighted, other instances of the word are not highlighted to avoid visual
clutter.

Variable Window Settings:

Enables the highlighting of modified variables in the variable window (page 159) and of modified entries in
handle inspect windows. Note that a variable is marked as modified if it was written into during the last step
or run operation, even if its value did not change because the same value was written into the variable again.

The color set for Background of Current Line is used to highlight modified variables.

Whitespaces

Enables the visualization of whitespaces within the program window. By default this option is turned off.

6.16.2 User Interface . Fonts

In this tab card, the font settings of HDevelop can be modified.

• General

The font used throughout the user interface (menu entries, labels etc.)

• Help Window

The body font used in the help window (menu Help (page 64) . Help).

• Program Window

The font used in the program window. This is the same font setting as on the tab card Program Window (see
above).

• Advanced Autocompletion

The font used in the advanced autocompletion overlays.

• Values and Parameters

The font used for displaying values in the variable window and associated inspection windows as well as
parameters in the operator window.

• Printing

The font used when printing program listings.

6.16.3 User Interface . Language

By default, HDevelop uses the language that is specified as the display language of the operating system. If the
language is changed via these dialogs, the operating system locale is ignored.

• HDevelop GUI

Changes the language of HDevelop’s Graphical User Interface. The new language will be applied the next
time HDevelop is started.

• Operator Reference

Changes the language of the HALCON Operator Reference within HDevelop’s help window (page 82), as
well as the language of the operator descriptions within the autocompletion and the operator window (page
90).

The new language of the operator descriptions is applied immediately. Note that some changes, like the
language of the operator window, only take effect after the next time HDevelop is started.

G
U

IR
ef

er
en

ce

114 Graphical User Interface

6.16.4 User Interface . Themes

• Current theme

Specifies the appearance of HDevelop, for example, the background color and the icon set. You can choose
between a dark and a light theme.

• Colors

Specifies the colors of the current theme. Click the color field to select a color. To reset a color, click . To
reset all colors, click Reset all colors.

6.16.5 Procedures . Directories

Use this tab card to manage the list of directories that contain external procedures. The directories are recursively
scanned for external procedures in their listing order (see section 5.4 on page 45).

Figure 6.38: Procedures . Directories.

Libraries: For each directory, the number of libraries is displayed. The number in parentheses sums up the
number of procedures contained in libraries.

Procedures: This column displays the total number of procedures, that is, the number of procedures found in
libraries and all other external procedures.

Loaded: The number of loaded procedures is usually equal to the total number unless the directory contains
corrupted procedure files, or files with the wrong permissions.

Procedures with the extension .hdvp always override procedures with the same name but the extension .dvp in
the same directory.

Please note that HALCON comes supplied with a set of standard procedures. These are general-purpose procedures
used by many of the supplied example programs. The path cannot be altered or deleted. It is, however, possible
to override the supplied external procedures by placing external procedures with the same name in one of the
user-defined directories.

The documentation of the supplied procedures is available in the online help of HDevelop under Procedure Refer-
ence Manual.

6.16.6 Procedures . External Procedures 115

Add: Select an additional directory from the file selection dialog. This directory will be added to the list. All
subdirectories of the selected directory will be scanned as well.

Add Library: Explicitly add a library (.hdpl) file to the list of directories. This will make the library procedures
available without looking at other procedures in the same directory.

Delete: Delete the selected entry from the list. Programs using any external procedure from that directory will
no longer run.

Rescan: Rescan all listed entries to reflect any changes in the file system.

Using the check boxes you can disable the corresponding directories temporarily without removing them from the
list.

The list entries can be reordered using the up/down arrow buttons.

6.16.6 Procedures . External Procedures

This tab card lists all external procedures in the order they are loaded from the configured directories (page 114).
For each procedure, the following information is displayed:

Figure 6.39: Procedures . External Procedures.

G
U

IR
ef

er
en

ce

116 Graphical User Interface

Column Meaning
Number of the external procedure.
Activated The check box toggles the activation status of the corresponding procedure, that

is, whether the procedure can be resolved. It can be used to temporarily dis-
able procedures, for example, to make concealed procedures of the same name
available.

Procedure Name Name of the external procedure.
State Loaded: The external procedure has been loaded successfully. It can be used in

any HDevelop program.
Unloaded: An error occurred while trying to load the external procedure, for ex-
ample, the file permissions are wrong or the external procedure file is corrupted.

Search Directory Directory name from the tab card Directories where this procedure is found.
Relative Path Path name of the external procedure relative to the search directory.
Used by Usage counter and the names of the callers of this procedure.
Modifications The number of modifications to the external procedure after it has been loaded.

Using the context menu, basic file system operations can be executed. You can copy, delete, or rename the selected
procedure file in the file system.

6.16.7 Procedures . Manage Procedure Libraries

Use this tab card to

• create new libraries,

• delete existing libraries,

• add procedures to libraries,

• remove procedures from libraries.

The table on the left lists all libraries, the number of contained procedures, and the path name to the library file.
The special entry “Procedures” contains all local procedures and all external procedures that are not contained in a
library.

• Select a list entry to display the contained procedures.

• Double-click a library from the list to edit its properties (see below).

The following buttons are available:

Create a new procedure library. See below.

Save changes in the selected procedure library. Modified libraries are marked with an asterisk (*).

Delete the selected procedure library. After a confirmation, the procedure library file is irreversibly lost.

Cut the selected procedures, to mark them for moving.

Copy the selected procedures, to mark them for duplication.

Paste the marked procedures into the selected entry.

Add procedures from the file system to the selected entry.

Delete the selected procedures.

For more information about procedures and their properties, see section 5.1 on page 43 and section 5.6 on page 47.

Drag-and-drop support:

In practice, it is much easier to drag procedures from one location to another than using the corresponding buttons.
A simple drag-and-drop moves the selected procedures from one place to another. To copy the selected procedures,
start to drag, then hold down

�� ��Ctrl , and drop at the destination (this is visualized by a + icon).

6.16.7 Procedures . Manage Procedure Libraries 117

Figure 6.40: Procedures . Manage Procedure Libraries.

Figure 6.41: Create a new procedure library.

Create a new procedure library (or edit existing libraries)

First, you have to specify the name of the new library and select a target directory. The configured directories can
be selected from the drop-down list, or you can select an arbitrary directory using the “browse” button.

Click the Password button to protect the entire library with a password (see also section 6.17.9 on page 145).

The fields Short Description and Detailed Description allow you to describe the new library in multiple
languages (select the desired language first, and then enter the description).

G
U

IR
ef

er
en

ce

118 Graphical User Interface

6.16.8 Procedures . Manage Passwords

Using this tab card, you can conveniently manage the status and passwords of all procedures (local and external).
The procedures are divided into three categories (from left to right): Procedures without a password (unprotected),
procedures for which the password has already been entered in this session (unlocked protected), and procedures
that are locked with a password (locked protected). For an explanation of the different states, see section 5.6 on
page 47.

Figure 6.42: Procedures . Manage Passwords.

Using the arrow buttons between the columns or the left and right cursor key, you can move the selected procedures
to a different status. If you move procedures from the first to the second column, a password dialog is displayed
which is described in section 6.17.9 on page 145. The same password is applied to all selected procedures.

If you move procedures from the second to the third column, the corresponding procedures will be locked. The
procedure interfaces can no longer be edited and the procedure bodies will no longer be displayed. They can
only be accessed if the correct password is supplied. This can either be done from this dialog by moving the
corresponding procedures back to the middle column and entering the password. Or, you can unlock procedures
individually from the program window as described in section 6.17.9 on page 146.

If you select multiple procedures in the third column and move them to the left, a password dialog appears to
unlock the procedures. Only those procedures are moved (and thus unlocked) that match the supplied password.
This way, you can conveniently edit a group of procedures that share the same password.

If all local procedures of the current program have been protected at once (by protecting the main procedure and
enabling the corresponding option, see figure 6.60 on page 146, the local procedures will always move as a single
group, even if only one local procedure is selected. The icon next to Program Protection State: (at the
bottom of the dialog) is marked with a lock if the entire program (main procedure and all local procedures) is
protected.

The button Change Password is available if one or more procedures are selected in the middle column. It assigns
a new password to the selected procedures, regardless if the previous passwords were different.

Please note, that password changes or moving procedures from or to the first column require the corresponding
procedures to be saved. See Save (page 53) and Save All (page 53).

6.16.9 Procedures . Procedure Use 119

6.16.9 Procedures . Procedure Use

This tab card lists the usage of procedures grouped by their calling procedures. You can select a procedure and the
type of used procedures (either local or external). For the main procedure you can also list the unused procedures.
The tab card is displayed in figure 6.43.

Figure 6.43: Procedures . Procedure Use.

6.16.10 Procedures . Unresolved Procedure Calls

This tab card helps you to find unresolved procedures in your current program. If the current program or the loaded
procedures contain unresolved procedure calls, they are listed here along with the calling procedure name.

G
U

IR
ef

er
en

ce

120 Graphical User Interface

6.16.11 General Options . General Options

• Show Start Dialog when starting HDevelop

If this option is checked, the Start Dialog is displayed automatically when opening HDevelop.

• Select the behavior of pressing the [Return] key...

• OK (Enter and execute)

Enter the operator in the program window and execute it.

• Enter

Enter the operator without executing it (the default behavior).

• Display string values with special characters quoted

Special characters (like \n for a newline character) in string values are usually interpreted in the variable
window and the variable inspect window. If this option is ticked, special characters are displayed verbatim,
as they are entered. See table 8.2 on page 249 for a list of special characters.

• Precision for displaying real values

This option sets the number of significant digits that are displayed in the variable window (page 159) and
variable inspection windows, see section 6.22 on page 166.

• Precision for displaying mouse position values

If set to a value greater than 0, subpixel mouse positions are enabled. See Position Precision (page 58)
for more information.

• Default resize mode for new Graphics window

This option controls the default resize mode for newly opened graphics windows. See section 6.1.4 on page
58 for more information about the resize modes. The default resize mode applies only to graphics windows
that are opened via menu, Visualization . Open Graphics Window... or Windows . Open Graphics

Window.

• Action when spinning the mouse wheel down The mouse wheel is used for zooming in and out in
windows with graphical content. This works consistently in the graphics window (page 74), the zoom win-
dow (page 176), the gray histogram window (page 98), the feature histogram window (page 103), and the
line profile window (page 106). The default setting is to zoom out when moving the mouse wheel down.
Depending on this setting, the zoom direction can be reversed.

• Default sort order in the Variable window

Variables can be sorted by name or by occurrence. See also variable window (page 163).

• Return relative file paths when appropriate

If enabled, HDevelop will try to convert file names selected from file selection dialogs to relative path names.

HALCON uses several distinguished directories that act as the preferred search directories for certain oper-
ators. For example, read_image will at first search for image files in %HALCONROOT%/images when given
a relative file path. For such operators HDevelop tries to turn the selected path into a path relative to the
preferred search directory.

If this fails, HDevelop tries to turn the selected path into a path relative to the current working directory. As
a minimum requirement, the selected path and the current working directory must have the same device and
top level directory. This will be useful in cases where, for example, an image directory and a directory for
HDevelop scripts are placed side by side within a common project directory.

If no relative path can be established, HDevelop will use the absolute path.

• Replace backslashes by slashes in pasted paths (Windows only)

This option determines the behavior when Windows path names are copied from an external program and
pasted into HDevelop. If set to Always, backslashes will always be replaced by slashes. If set to Never, the
path will be pasted unaltered. If set to Ask, HDevelop lets you choose the behavior each time a Windows
path is pasted from the clipboard. For relative path names the replacement will only be performed if the
path is pasted to a position where a path name is expected, for example, an operator parameter with the
corresponding semantic type.

6.16.11 General Options . General Options 121

• Copy local procedures in full-text editor This option determines the behavior when program
lines containing calls to local procedures are copied and pasted. If set to Always, the corresponding local
procedures will be copied as well unless they are already available. If set to Never, the corresponding local
procedures will not be copied. Note that this will result in invalid calls if the copied lines are pasted into a
program where the corresponding local procedures are not available. If set to Ask, HDevelop lets you choose
the behavior each time you paste the lines into a program where the local procedures are not available.

• Number of recent program files

The maximum number of recent program files that are displayed in the menu File . Recent Programs

(page 53) can be adjusted by altering this value.

• Show recent program files

If you select the option Only available, the list of recent programs contains only programs that are cur-
rently available. This option is useful, if the list is likely to contain files from network drives that might be
disconnected at times.

• Show full path in main window title

If enabled, the full path of the current program is displayed in the title bar of the HDevelop window. Other-
wise the file name is displayed.

• Load the latest program automatically while starting HDevelop

If enabled, the most recently used program, that is the top entry under File . Recent Programs (page
53), is loaded automatically when HDevelop starts. This behavior can be overridden from the command line
using the switches load_recent_prog/load_no_prog (see appendix C.1 on page 323).

• Save program and external procedures automatically before execution

If this option is enabled and you click any of the execution buttons (like Run or Step Over) and there are
unsaved changes in the current program, the program will be saved before being executed. Use this option
with care: You usually do not want to select this option if you are experimenting with a program, for example,
when trying out different parameter settings.

• Encoding for saving HDevelop programs and procedures when the legacy HDevelop 5.0

- 9.0 file format (dev, dvp) is used

HDevelop supports two different file types for programs and procedures (see section 5.2 on page 44). Pro-
grams and procedures in the default file format (.hdev and .hdvp, respectively) are always saved in UTF-8

encoding. When saving programs and procedures in the legacy format (.dev and .dvp, respectively), the en-
coding depends on this setting. In order to exchange data with older versions of HDevelop (before HALCON
8), the encoding must be set to Native.

• Default file format for saving HDevelop programs

Sets the default file format for new programs, see section 5.2 on page 44.

• Default file format for saving HDevelop procedures

Sets the default file format for new external procedures, see section 5.2 on page 44.

• Update windows in single-step mode

Specifies the window update policy when stepping through the program. The different options are described
in section 6.1.4 on page 58.

• Maximum number of subthreads

Specifies the maximum number of subthreads that be started using the par_start qualifier (see section 8.11
on page 283).

• Window open offset

Specifies an offset for the origin of floating windows. These offset values are added to the values for Row
and Column, which are input parameters for some HALCON operators, like dev_set_window_extents

or dev_open_tool. For example, dev_open_tool(’bookmarks_dialog’, 0, 50, ...) with offset
values (50, 50) opens at position (50, 100). See figure 6.44 for an illustration of the window offset.

• Origin of coordinates

Sets the reference point for the origin of floating windows, opened via operators like dev_open_tool and
dev_open_window.

G
U

IR
ef

er
en

ce

122 Graphical User Interface

Figure 6.44: Window offset.

Reference point for the window position by default (upper left corner of the desktop)

The origin of the HDevelop window is its upper left corner

Value definded by the operator values for Row here (0, 0)

Value definded by the operator values for Column here (0, 0)

• Main display

The main display is usually defined in the display settings of your operating system. If you have only
one monitor, this is the main display. This display acts as the active desktop. It shows the taskbar
and most items will open on the main display by default.

• Display showing HDevelop

The display that currently shows the HDevelop main window (page 51). This setting is only relevant
if you use multiple monitors. Otherwise, the Display showing HDevelop is the same as the Main
display.

• HDevelop

HDevelop’s main window (page 51).

Please also note the setting Window open offset.

• Floating windows behavior

Specifies the accessibility of floating windows. To apply the new settings, a restart of HDevelop is required.
This only refers to graphic, tool and assistant windows.

• Non minimizable and remains in foreground

Floating windows stay in the foreground of HDevelop. They cannot be minimized, nor can they be
accessed separately via taskbar.

• Minimizable, does not remain in foreground

Floating windows move to the background as soon as an other window gets the focus. They can be
minimized and get a taskbar entry. Thus, you can access them via

�� ��Alt+Tab under Windows. (Depending
on your operating system, the shortcut for quickly switching between windows might differ.)

6.16.12 General Options . Experienced User

• Show HALCON Low Level Error Message Boxes

Low-level errors are normally invisible for the user because they are transformed into more comprehensive
error messages or ignored. Activating this item generates a message box each time a low-level error occurs.

• Suppress error message dialogs within try-catch blocks

6.16.12 General Options . Experienced User 123

HDevelop normally displays a dialog when a run-time error occurs (unless this has been changed in the
tab Runtime Settings . Runtime Settings). Per default, these dialogs are suppressed when the error
occurs in a watched block of program lines (surrounded by try ... catch). In this case, the exception is
caught by the program. The program continues at the corresponding catch ... endtry block.

Deactivating this option will bring up a dialog even if the error occurs within a try-catch block.

Error message dialogs within try-catch blocks are always suppressed in JIT-compiled procedures (see
option below) regardless of this setting.

• Stop execution at invalid program lines

If enabled, a dialog will be displayed if an invalid program line is reached, allowing to stop the program and
edit the corresponding line, or to ignore it and continue execution. If disabled, invalid program lines will
always be ignored.

• Suppress warnings for HALCON operators that are replaced by dev-operators

Some operators are deprecated in HDevelop, and issue a warning message when selected in the operator
window. Activating this option suppresses the warning message.

• Disable parameter detection for acquisition operators

In the operator window, the parameter suggestions for the operators open_framegrabber,
set_framegrabber_param, and get_framegrabber_param depend on the selected image acquisi-
tion interface. This behavior can be disabled by ticking the check box. See also section 6.11.2 on page
91.

• Ignore semantic type

By default, the parameter suggestions in the operator window and the program window (with advanced
autocompletion enabled) include only variable names that match the semantic type of the corresponding
parameter. If Ignore semantic type is checked, these suggestions are extended so that they also include
suggestions of variables with a different semantic type.

• Show memory usage

If this option is activated, the internal temporary memory usage of the last operator or procedure call is
displayed in the status bar.

• Execute procedures JIT-compiled

HDevelop supports just-in-time (JIT) compilation of procedures for optimized performance of HDevelop
programs, see section 5.9 on page 48. The JIT compilation is globally enabled or disabled using this setting.

• File tracking behavior

By default, the file tracking is set to System file tracking. This option may limit the number of tracked
files. When Application file tracking is activated, a timer checks for changed files. This option can
affect the operating system performance. Switch off the file tracking by choosing No file tracking.

G
U

IR
ef

er
en

ce

124 Graphical User Interface

6.16.13 Visualization Settings

The tab cards in this category define the default visualization settings for graphics windows when HDevelop is
started. See section 6.8.2 on page 76. The dialog is displayed in figure 6.45.

Figure 6.45: Visualization Settings . Visualization Parameters.

Reset to factory defaults Remove the user-defined colors and custom color sets.

Adapt active settings Adapt the user-defined colors and custom color sets permanently. To define your own
colors and color sets, use the Visualization Parameters dialog (see section 6.8.2.1 on page 77).

6.16.14 Runtime Settings . Runtime Settings

The settings in this category affect the runtime behavior of HDevelop. Please note that the runtime settings are not
persistent between sessions. The runtime settings are reset to their default values, when a new HDevelop program
is started with Menu File . New Program.

• Give Error

This check box specifies the behavior of HDevelop if an error occurs. If it is checked, HDevelop stops the
program execution and displays an error message. Otherwise the error is ignored. See also: dev_set_check.

• Show Processing Time

This check box indicates whether the required runtime of the last operator or procedure call should be dis-
played after the execution has stopped. It is a measurement of the needed time for the current operator or
procedure call, without output and other management tasks of HDevelop. Along with the required runtime,
the name of the operator or procedure is displayed in the status bar at the bottom of the main window. Please
note that the displayed runtime can vary considerably. This is caused by the inaccuracy of the operating
system’s time measurement procedure. See also: dev_update_time.

This option can also be toggled from the context menu of the status bar (see section 6.3 on page 65).

• Update Program Counter

This option concerns the display of the current position while running the program. The PC always indicates
the line of the currently executing operator or procedure call or the line before the next operator or procedure
call to execute. Using the PC in this way is time consuming. Therefore, you can suppress this option
after your test phase or while running a program with a lot of “small” operators inside a loop. See also:
dev_update_pc.

• Update Variables

This check box concerns the execution of a program: Every variable (iconic and control) is updated by default
in the variable window. This is very useful in the test phase, primarily to examine the values of control data,

6.16.15 Runtime Settings . Override Operator Behavior 125

since iconic data is also displayed in the graphics window. If you want to save time while executing a program
with many operator calls, you can suppress this output. Independent of the selected mode, the display of all
variables will be updated after the program has stopped. See also: dev_update_var.

• Update Graphics Window

This item concerns the output of iconic data in the graphics window after the execution of a HALCON
operator. With the default settings, all iconic data computed in the run mode is displayed in the current
graphics window. You may want to suppress this automatic output, for example, because it slows down the
performance or because the program handles the visualization itself. If the output is suppressed, you have
the same behavior as exported C, C++, Visual Basic .NET, or C# code, where automatic output of data is not
supported. See also: dev_update_window.

• Enable the context menu in the Graphics window

If this option is activated, the context menu is available when clicking in a graphics window with the right
mouse button. This behavior can be undesirable if a program provides user interaction with the mouse. See
also: dev_set_preferences.

• Enable the mouse wheel in the Graphics window

By default the mouse wheel is used to zoom in and out in the graphics window. If this interferes with a
custom mouse handling, the mouse wheel can be disabled. This is desirable, for example, if 3D objects are
displayed in the graphics window and the zooming functionality is implemented with the help of 3D display
operators. See also: dev_set_preferences.

• Enable tooltip showing coordinates and gray value at the mouse cursor position...

If enabled, a tooltip will be displayed if the mouse cursor is in the graphics window and the
�� ��Ctrl key is held

down. The tooltip shows the pixel coordinates (row and column), and the gray value(s) at the mouse cursor
position.

• Record Interactions

If enabled, changes to the visualization settings will be recorded by adding the corresponding operator calls
to the current program. See section 6.4 on page 57.

6.16.15 Runtime Settings . Override Operator Behavior

This tab card allows you to modify the default behavior of stop and wait_seconds. Click the check box next to
the corresponding operator and specify the modification.

stop: By default, the stop operator halts the program execution. It is mainly used to highlight or evaluate
processing steps in a larger program. If you want to run such a program uninterrupted without altering the
actual program code, you can make the stop operator behave like wait_seconds, that is, perform a defined
delay. The delay is specified in seconds.

wait_seconds: The operator wait_seconds is often used in situations where an intermediate program result
is presented that would otherwise pass by too fast. Sometimes, you want to run such a program without
any delays, for example, for performance measuring purposes. At other times, you would like to stretch the
delays, for example, for evaluation or presentation purposes. Therefore, you can redefine the actual delay of
wait_seconds. The delay is specified in seconds.

Selecting exactly causes the specified delay for each wait_seconds instruction.

Selecting with minimum causes delays up to the specified duration. Calls to wait_seconds with a shorter
duration will not be affected.

Selecting with maximum causes delays of at least the specified duration. Calls to wait_seconds with a
longer duration will not be affected.

The following table shows the actual delay caused by different override settings:

Actual program call with minimum(10s) with maximum(10s)
wait_seconds(1) 1s 10s
wait_seconds(20) 10s 20s

G
U

IR
ef

er
en

ce

126 Graphical User Interface

6.16.16 Telemetry

You can help us improve your HALCON user experience by anonymously sharing usage data with MVTec. This
will also allow you to receive additional information on our latest or upcoming products. To enable the telemetry
feature, select Share the following anonymous data with MVTec and decide which information to send:

System information The sent data comprises geographical data, such as country and region, operating system
and platform, monitor resolution, graphic card models, and the number of CPU cores. Note that this option
cannot be excluded separately.

HDevelop usage statistics The sent data comprises system information about HDevelop, such as selected
language, HALCON version and edition, workflow information, like export and tool usage.

HDevelop Help usage statistics The sent data comprises workflow information inside HDevelop Help, like
used search terms and viewed chapters and pages.

HALCON Library statistics The sent data comprises the list of used HALCON modules.

You can inspect the raw data being sent by clicking Get session data. To export the data as a CSV file, click
Export session data.

6.17 Program Window

A program window displays the HDevelop program code of a single procedure. You can open multiple program
windows to view different procedures or different parts of the same procedure at the same time (see Menu Window

. Open Program Window (page 63)). To switch between selected procedures rapidly, program windows support
multiple tabs.

The program window (see figure 6.46 on page 128) is divided into three areas:

• The main part of the program window contains the program code of the current HDevelop procedure. See
section 6.17.2.

• The column at the left side displays line numbers. It also contains the PC, the IC, and optionally, one or more
breakpoints. Bookmarked lines and warning indicators are displayed. See section 6.17.3 on page 132.

• At the top, the displayed procedure can be selected from the drop-down list. If you hold down
�� ��Ctrl while

selecting a procedure, it will be displayed in a new tab card.

The arrow buttons provide convenient access to previously displayed procedures. For example, if the current
procedure is the main procedure, and you select another procedure from the drop-down list, the left arrow
button takes you back to the main procedure. When you get there, the right arrow button moves forward, and
displays the previously selected procedure again.

Using the tool bar button to the right of the procedure list, the interface of the current procedure and its
documentation can be edited. The number of parameters as well as their names and types, can be modified.
See section 6.17.5 on page 134 for a detailed description.

6.17.1 Program Window Actions

Action Shortcut Description
Back in History

�� ��Alt+Shift+Left Back in history.
Forward in

History

�� ��Alt+Shift+Right Forward in history.

Show Previous

Tab Card

�� ��Alt+Left Select the next tab card to the left.

Show Next Tab

Card

�� ��Alt+Right Select the next tab card to the right.

New Tab Open a new tab in the current program win-
dow.

6.17.2 Editing Programs 127

Action Shortcut Description
Edit Procedure

Interface

�� ��Ctrl+Shift+P,I or�� ��Ctrl+Shift+P,Ctrl+Shift+I

Edit interface and documentation of cur-
rent procedure.

Pin the program

listing

If enabled, automatic scrolling is turned off
during program execution.

List Open Tabs Lists all open tabs (if multiple tabs are dis-
played). Click a list item to activate the
corresponding tab.

Set Program

Counter

�� ��Ctrl+, Set program counter to current program
line.

Set Insert

Cursor

�� ��Ctrl+. Set insert cursor to current program line.

Set/Clear

Breakpoint

�� ��F10 Set or clear breakpoint in current line.

Help
�� ��F1 Open the reference documentation of the

operator or procedure call of the current
line.

Select a

Procedure

�� ��Alt+Up Display a selected procedure from the list.

Move tab to the

left

�� ��Ctrl+Alt+Shift+Left Move the current tab to the left.

Move tab to the

right

�� ��Ctrl+Alt+Shift+Right Move the current tab to the right.

Go to Line
�� ��Alt+G Move cursor to the specified line.

Go to Program

Counter

�� ��Alt+, Move cursor to program counter.

PC Down
�� ��Ctrl+Down Move program counter down.

PC Up
�� ��Ctrl+Up Move program counter up.

Show main
�� ��Alt+Home Display main procedure.

Execute Current

Line

�� ��Ctrl+Return or�� ��Ctrl+Enter

Execute current line

Zoom in
�� ��Ctrl+mouse wheel up Increase font size in program window.

Zoom out
�� ��Ctrl+mouse wheel down Decrease font size in program window.

Scroll up
�� ��mouse wheel up Scroll up through the lines of program

code.
Scroll down

�� ��mouse wheel down Scroll down through the lines program
code.

Scroll up

page-wise

�� ��Shift+mouse wheel up Scroll up through the pages of program
code.

Scroll down

page-wise

�� ��Shift+mouse wheel down Scroll down through the pages of program
code.

6.17.2 Editing Programs

The program window supports full text editing. Continuous portions of text can be selected by dragging with
the mouse. An existing selection can be extended by holding down

�� ��Shift and clicking the left mouse button.
Double-clicking selects the word under the mouse pointer while triple-clicking selects the entire line.

To edit a program line in the operator window, double-click it with the left mouse button. If the operator window
is not currently open, hold down

�� ��Ctrl while double-clicking.

• The window title of the operator window clearly indicates that you are editing an existing program line. It
also displays the procedure name and the line number.

• Clicking OK or Replace in the operator window will replace the original program line. This is even the case
if the corresponding program line is no longer in view, for example, if a different procedure is selected in the
program window.

If the program line is deleted before the changes are committed in the operator window, the edited line will
be inserted as a new program line at the IC. If you are in doubt about the current status, check the window
title of the operator window.

G
U

IR
ef

er
en

ce

128 Graphical User Interface

Figure 6.46: Program Window.

BP

Warning

PC

IC

Bookmark

Browse history

Add new tab

Select procedure

Edit procedure interface

Pin program listing

Comments

Comments start with an asterisk (*) as the first character. You can also add comments at the end of regular program
lines by introducing them with //.

* this comment is ignored during program execution

read_image (Image, 'clip') // instantiate iconic variable

threshold (Image, Region, 0, 63) // select dark pixels

Special Input Formats

Certain operator calls can be entered in different formats. Syntactically, they are equivalent but the first variant
is more readable and thus recommended. It is also the one used when entering the corresponding calls via the
operator window.

• Variable assignments

FileName := 'clip'
assign('clip', FileName) // deprecated

• Setting individual tuple elements

6.17.2 Editing Programs 129

Line[12] := 'text'
assign_at(12, 'text', Line) // deprecated

Note that for loops always have to be entered in the following format:

for Index := Start to End by Step

...

endfor

Line Continuation

Operator calls can span several lines for readability. A line can be continued by entering a backslash character as
the last character of that line.

For example, you can enter

disp_arrow (WindowID, \

Row[i], \

Column[i], \

Row[i]-Length*sin(Phi[i]), \

Column[i]+Length*cos(Phi[i]), \

4)

instead of

disp_arrow (WindowID, Row[i], Column[i], Row[i]-Length*sin(Phi[i]), Column[i]+...

Auto Indenting

The indent of new lines is adjusted automatically. Usually, the indent of the previous line is maintained. If a line is
continued inside the parentheses of an operator call, the new line is indented up to the opening parenthesis. If the
previous line opens a control structure (for example, if or while), the indent is increased by the indent size. The
indent size is specified in the preferences (see Program Window (page 112)). It defaults to four spaces. If a control
structure is closed (for example, by entering endif or endwhile), the indent of the current line is decreased by
the indent size.

Advanced Autocompletion

The program window provides advanced autocompletion to support you in several ways.

• Getting started
HDevelop’s autocompletion can assist you getting started with a completely empty program. Press

�� ��Tab to
get a list of typical first operators like dev_open_window and read_image.

• Suggestions for empty code lines
Possible successors of the previous HALCON operator are suggested after pressing

�� ��Tab .

G
U

IR
ef

er
en

ce

130 Graphical User Interface

Press
�� ��Shift+Tab to get suggestions for possible predecessors.

• Typing support
When you start typing a new line, HDevelop will suggest a list of matching operator names:

Note that the line is highlighted as invalid (red in the default color scheme) because it is still incomplete.

The list is updated immediately as you continue typing:

Press
�� ��Tab to complete to the longest common string. In this example, only one operator name remains in

the list. Thus, it is fully completed, including the opening parenthesis of the operator call:

Once the cursor moves inside the parentheses, the suggestion list changes from operator mode, to parameter
mode. The signature of the selected operator is displayed, and the parameter corresponding to the cursor
position is highlighted in bold.

The first entry in this list is a suggestion that completes the full operator call up to the closing parentheses.
Again, typing ahead updates the list of suggestions accordingly. The remaining entries are suggestions for
the first parameter of the operator call.

Press
�� ��Tab to select the first suggestion,

or press
�� ��Up or

�� ��Down to step through the list entries,

6.17.2 Editing Programs 131

and press
�� ��Tab or

�� ��Return to select the highlighted entry. Then, enter a comma or press
�� ��Tab again to get

suggestions for the second parameter:

Double-clicking the browse button in the suggestion list opens up a file selection dialog to specify the file
name parameter. These browse buttons are included in the suggestions lists of all parameters that specify a
file name.
In this example, we want to load the image clip, so none of the suggestions fits. Just type the file name
in single quotes ('clip') and press

�� ��Tab to complete the parameter list. The closing parenthesis is inserted
automatically:

When entering expressions, the advanced autocompletion also suggests operations supported by the HDe-
velop language (see chapter 8 on page 247).

Please note that the advanced autocompletion does not suggest legacy or deprecated operators. If you enter
such an operator manually, a warning icon is displayed in the left column. Move the mouse cursor over this
icon to get a tool tip with a corresponding warning message:

The program window also supports autocompletion of block statements. When entering a control statement,
for example, the control statement of a for loop, the corresponding end statement, for example, endfor of
the block is automatically inserted by pressing

�� ��Return .

Special Keyboard Shortcuts in the Program Window�� ��Tab Cursor at the beginning of line: Adjust indentation of current line
Selected text: Indent corresponding code lines one level

AC Operator suggestions: Complete to highlighted suggestion or to longest common string
from suggestion list�� ��Shift+Tab Selected text: Outdent corresponding code lines one level�� ��Ctrl+Return Execute current line (same as clicking Apply in operator window; see section 6.11.3 on
page 94)�� ��Shift+Return Cursor at the end of line: Execute current line and insert new line (depends on the
setting of the Select the behavior of pressing the [Return] key option; see
section 6.16.11 on page 120)�� ��Ctrl+F Open find/replace dialog with selected text (see section 6.7 on page 71).�� ��Escape AC Hide suggestion list�� ��Ctrl+Space AC Re-display suggestion list based on cursor position or selection�� ��Up AC Highlight previous entry in suggestion list�� ��Down AC Highlight next entry in suggestion list

AC Parameter suggestions: Complete to highlighted suggestion or first suggestion if no sug-
gestion is highlighted�� ��Return AC Cursor at the end of a block statement: Insert the corresponding end statement of the
block

Entries marked with AC are only available if advanced autocompletion is enabled.

G
U

IR
ef

er
en

ce

132 Graphical User Interface

Special Operator Handling

Some operators provide additional functionality when being edited. This functionality is available via an action
button next to the parameter field in the operator window, or as an action button in the advanced autocompletion
suggestion list.

If an operator contains a parameter that specifies a file name, the parameter value can be specified in a file selection
dialog. See the previous section for an example (read_image).

The operators info_framegrabber and open_framegrabber provide a button to detect the available image
acquisition interfaces automatically (see also Image Acquisition Assistant (page 180)).

6.17.3 Program Counter, Insert Cursor, and Breakpoints

The column to the left of the displayed program body contains

• the program counter (PC) ,

• the insert cursor (IC) ,

• and optionally one or more breakpoints (BPs) .

The PC indicates the line of the next operator or procedure call to execute. The IC indicates the position to insert
a new program line. A breakpoint (BP) shows the program line on which the program is stopped.

You can position or activate these three labels by clicking in the left column of the program window. That column
itself is divided into three areas: Depending on the horizontal position of the mouse cursor, all three label types
are available. The actual type is indicated through a change of the mouse cursor. At the leftmost position, BPs
can be placed. In the middle position, the PC can be placed. And finally, in the rightmost position, the IC can be
placed. If this seems confusing, you can force a specific label by holding down the following keys regardless of
the horizontal position:

• Hold
�� ��Shift to place the IC.

• Hold
�� ��Ctrl to place or delete a BP.

• Hold
�� ��Ctrl+Shift to place the PC.

The PC can only be placed on program lines of procedures on the callstack. For example, in figure 6.47 on page
135, the PC can be placed anywhere in the procedures main, first, or second. It may not be placed within the
procedure third. If the PC is placed in first, the first element of the callstack is popped. If the PC is placed in main,
only main remains on the callstack. Please note the outlined green arrows in main and first: They indicate the
return positions.

6.17.4 Context Menu

By clicking into the program window with the right mouse button you can open a context menu, which contains
shortcuts to some of the actions of the menus Menu Edit, for example, copy and paste lines, and Menu Execute,
for example, activate and deactivate lines or set and clear breakpoints. Please note that these actions behave slightly
differently than their counterparts in the main menus: When called via the main menus, the actions are performed
only on the selected part of the program; if nothing is selected, no action is performed. In contrast, when an action
is called via the context menu and no line is selected in the program, the action is performed for the line that you
right-clicked.

Note that any actions that modify the position of the PC will cause the call stack to pop all procedure calls until
the current procedure call remains on top. This is relevant in case the current procedure call is not the top-most
procedure call and is necessary to secure the consistency of the call stack. Modification of the PC can happen as
well directly as described above or indirectly by, for example, inserting a program line above the PC in the current
procedure body.

Action Shortcut Description
Run Until Here

�� ��Shift+F5 Execute the lines from the PC to the line
under the mouse cursor.

6.17.4 Context Menu 133

Action Shortcut Description
Open Operator

Window

�� ��Ctrl+Shift+Space Open the current operator or procedure call
in the operator window for editing.

Help If the line under the mouse cursor contains
an operator call, the corresponding page
will be opened in the online help window.
This is a shortcut to double-clicking the
program line and clicking Help in the op-
erator window.

Show Procedure
�� ��Alt+Return or�� ��Alt+Enter

If the line under the mouse cursor contains
a procedure call, the corresponding pro-
cedure will become the current procedure
and it is displayed for editing.

Show Procedure

in New Tab

�� ��Alt+Ctrl+Return or�� ��Alt+Ctrl+Enter

If the line under the mouse cursor contains
a procedure call, the corresponding pro-
cedure will be displayed as a new tab in
the current program window. If the cor-
responding procedure tab exists already, it
will be activated.

Show Procedure

in New Window

�� ��Alt+Shift+Return or�� ��Alt+Shift+Enter

If the line under the mouse cursor contains
a procedure call, the corresponding proce-
dure will be displayed in a new program
window.

Show Caller This menu item lists all the places in the
current program where the currently se-
lected procedure is called. Clicking an en-
try takes you to the corresponding program
line.

Cut
�� ��Ctrl+X or

�� ��Shift+Del Cut selected text.
Copy

�� ��Ctrl+C Copy selected text.

Paste
�� ��Ctrl+V or

�� ��Shift+Ins Paste clipboard content at cursor position
or replace selected text with clipboard con-
tent.

Delete
�� ��Del Delete selected text.

Activate
�� ��F3 Activate selected lines.

Deactivate
�� ��F4 Deactivate selected lines.

Auto Indent
�� ��Ctrl+Shift+I The indenting level of all selected program

lines is updated. Nested program blocks
are indented by the amount of spaces set in
the preferences.

Create New

Procedure

�� ��Ctrl+Shift+P,C or�� ��Ctrl+Shift+P,Ctrl+Shift+C

See Create New Procedure (page 59).

Set Program

Counter

�� ��Ctrl+, Set the PC to the selected line.

Set Insert

Cursor

�� ��Ctrl+. Set the IC to the selected line.

Update Program

Counter

See preferences (page 124).

Set/Clear

Bookmark

�� ��Ctrl+F11 See Set/Clear Bookmark (page 54).

Set/Clear

Breakpoint

�� ��F10 See Set/Clear Breakpoint (page 56).

Activate/Deactivate

Breakpoint

�� ��Shift+F10 See Activate/Deactivate

Breakpoint (page 56).
Set/Clear

Breakpoint on

Variable

Toggle breakpoint on variable under mouse
cursor. See section 6.21.1 on page 161.

G
U

IR
ef

er
en

ce

134 Graphical User Interface

Action Shortcut Description
Activate/Deactivate

Breakpoint on

Variable

Toggle activation of breakpoint on variable
under mouse cursor.

Manage

Breakpoints

�� ��Ctrl+Shift+O,F10 or�� ��Ctrl+Shift+O,Ctrl+Shift+F10

See Manage Breakpoints (page 153).

Add Watch Add the variable under the mouse cursor to
the user tab of the variable window.

Print...
�� ��Ctrl+P See Print... (page 110).

6.17.5 Creating Procedures

Procedures can be created from scratch or from selected program lines in the currently displayed procedure. When
you start a new HDevelop program, there is only the main procedure. As the program grows, you often find that
chunks of code have to be reused or they constitute a functional unit. In these cases, it is good practice to relocate
the corresponding lines to a new procedure.

As an example, consider the following example program:

In this example, you want to reuse the selected program lines. To create a new procedure from these program lines,
click the menu entry Procedures . Create New Procedure (page 59) or select the corresponding entry from
the context menu of the program window. The new procedure can now be setup in the procedure interface dialog.

6.17.5.1 Setting Up the General Settings of a Procedure

See also: Procedures . Create New Procedure (page 59) / Edit Procedure Interface (page 59).

Name The procedure name must start with a letter and may consist of alphanumeric characters and underscores.
If you enter an invalid name, such as an operator name, a reserved word, or a name that contains invalid
characters, the text field will be highlighted. You will not be able to close the dialog and apply the changes
until a valid name is provided.

Operator names cannot be used because operators and procedures share the same namespace. However,
procedures with the same name (but different locations) are allowed in HDevelop (see section 5.5 on page
46).

Password You can optionally protect procedures by a password. Protected procedures can be used in HDevelop
programs without restrictions. However, to view and modify them the correct password needs to be provided.
See section 5.6 on page 47 for more information.

Type This check box determines the procedure type (see section 5.1 on page 43). By default, a local procedure
is created. Local procedures are saved within the HDevelop program. External procedures are saved as
stand-alone files. Libraries may contain multiple procedures in a single file.

The file type of external procedures can be specified explicitly (.hdvp or .dvp; see section 5.2 on page 44).

External and library procedures can be reused in other HDevelop programs. You can change the procedure
type at any time.

6.17.5 Creating Procedures 135

Figure 6.47: PC and call stack.

Execute by pressing
�� ��F5

Directory For external procedures a target directory has to be specified.

The first directory specified in the procedure preferences (see section 6.16.5 on page 114) is suggested as the
target directory. You can select an appropriate directory from the list, or click the browse button to select an
arbitrary directory.

Figure 6.48: Dialog for creating a new procedure.

G
U

IR
ef

er
en

ce

136 Graphical User Interface

Figure 6.49: Settings for an external procedure.

Figure 6.50: Settings for a library procedure.

If the selected directory is not currently contained in the configured directories, HDevelop will ask you if
you want to add it to the list when you commit the dialog.

Library For library procedures a target library has to be specified. The list contains all currently available li-
braries. The buttons next to the list allow you to create a new library or browse for an existing library that is
currently not configured.

Scope (Public or Private)

Specifies whether procedures can be called by any procedure (public), or only by procedures in the same
directory or file (private) as described in section 5.3 on page 45. The icons of private procedures are decorated
with a green dot.

Activated This check box determines whether or not the selected external procedure can be resolved. This
option can also be toggled in the preferences (see section 6.16.6 on page 115).

Keep Explicitly Opened (existing external procedures only)

If checked, the selected procedure will be kept open for editing even if its path is not configured in the
preferences. Procedures marked this way can always be selected from the drop-down list of the program
window.

Add Path (existing external procedures only)

Add the directory of the selected procedure to the list of procedure directories (see section 6.16.5 on page
114).

The addition can either be permanent or for the current session only. This is further explained in section 5.4
on page 45.

6.17.5.2 Setting Up the Procedure Parameters

This part of the dialog is used for the definition of procedure parameters. HDevelop procedure interfaces have
the same structure as HALCON operator interfaces. They can contain parameters of the four categories iconic
input, iconic output, control input, and control output in this order. The procedure interface dialog contains four
separate areas where the different parameters types can be edited. Each area contains a button for appending new
parameters to the parameter list.

When creating a new procedure from selected program lines, HDevelop automatically determines suitable interface
parameters for the procedure from the usage of the variables in the selected code. The combo box Selection

Scheme determines the suggestion of the procedure parameters.

6.17.5 Creating Procedures 137

Figure 6.51: Procedure parameters.

First In If the first use of a variable inside the selected lines is as an input variable, it will be suggested as an
input parameter of the procedure.

Last Out If the last use of a variable inside the selected lines is as an output variable, it will be suggested as an
output parameter of the procedure.

All In All input variables inside the selected lines are suggested as input parameters in the procedure.

All Out All output variables inside the selected lines are suggested as output parameters of the procedure.

The classification of variables in the selected program lines is performed separately for iconic and control variables.

If a variable is an input as well as an output variable, it is assigned to the first category, and the corresponding
procedure parameter becomes an input parameter.

If, according to the above rules, a variable name would be suggested as an input as well as an output parameter, it
becomes an input parameter of the procedure. In addition, an output parameter with the variable name extended
by “Out” is created.

As an illustration, the following program lines are selected for a new procedure:

threshold (Image, Region, 128, 255)

connection (Region, ConnectedRegions)

Then, based on the selection scheme All In All Out, the procedure body will read

copy_obj (Region, RegionOut, 1, -1)

threshold (Image, RegionOut, 128, 255)

connection (RegionOut, ConnectedRegions)

To the right of the parameter list, the following buttons are provided:

Reset If you are creating a new procedure, clicking this button removes all entered parameters. If you are editing
an existing procedure, the original interface is restored, for example, any changes to the parameters are
undone.

G
U

IR
ef

er
en

ce

138 Graphical User Interface

Remove Using this button you can remove single parameters from the list. Before clicking this button, focus the
corresponding parameter by clicking its text field.

Move Up, Move Down Using these buttons you can alter the order of the parameters. Select a parameter by clicking
its text field and use the buttons to change its position.

To move a parameter from one parameter group to another parameter group, follow these steps:

• Remove the parameter from the current group.

• Click Apply to save the current state.

• Add the parameter to the desired group.

Vector Parameters

HDevelop 12.0 and later versions support vector variables. See section 8.6 on page 270 for a detailed description.
Vector variables can be used in procedure calls. The following buttons handle the conversion of parameters to
vector and back again. Please note that the dimension of a vector in a procedure call must match the dimension
specified in the procedure interface. If the procedure expects a vector of tuples, it cannot be called by passing a
vector of vectors of tuples.

Vector parameters are distinguished from other parameters by showing the contained type and the dimension next
to the parameter name, for example, object {1} for a vector of iconic objects, or tuple {2} for a vector of
vectors of tuples.

To Vector Set the type of the selected parameter to vector. If the selected variable is of type vector already, its
dimension can be increased with this button (label changes to Dim +).

To Object / To Tuple Set the type of the selected parameter to object (iconic parameters), or to tuple (control
parameters). If the selected variable is a multi-dimensional vector, its dimension can be decreased with this
button (label changes to Dim -).

6.17.5.3 Committing the Procedure Interface

Replace selected program lines If this option is enabled, the selected program lines are replaced by an
appropriate call to the newly created procedure see figure 6.52 for an illustration. Otherwise, the original
program lines are kept and no procedure call is added. In any case, the selected program lines are copied to
the body of the new procedure.

Adapt program (existing procedures only) This setting is not relevant for new procedures, but useful when
modifying the interface of existing procedures. When enabled, all program lines calling the procedure in
question will be adapted according to the interface changes.

For example, if you decide that a certain parameter is no longer necessary, the corresponding expressions or
variable names will be removed from all procedure calls in the program when you close the dialog and apply
the changes. If this is an input parameter, the program will continue to run without further modifications.
If it is an output parameter, subsequent program lines relying on the value of that parameter will have to be
adjusted manually.

As another example, if a new parameter has become necessary, a variable of the same name will be added to
all procedure calls. If this is an input parameter, the corresponding variable will most likely not be initialized
at the time of the procedure call and has to be assigned to manually. If it is an output parameter, the program
will continue to run without further modifications.

Leaving this feature enabled is highly recommended to keep the program consistent.

OK Activating the button OK at the bottom of the dialog either creates a new procedure or commits the changes
made in the procedure interface, depending on whether the interface dialog was invoked to create a new
procedure or to modify an existing procedure. In the latter case not only the interface itself might be changed
but also the procedure’s program body and variable lists, as new variables might have been added or existing
variables might have been removed or renamed.

If you change the interface of an external procedure, be aware of the fact that other programs containing it
do not update the procedure calls. When loading these programs, the procedure calls are disabled. If the
changes were applied to a procedure that is called from inside a protected external procedure, that procedure
call is not even updated in the current program.

6.17.6 Editing Procedures 139

Cancel This button dismisses the dialog. Any changes to the interface or the documentation of the edited proce-
dure are lost (with the exception of the editing status, see section 5.6 on page 47).

Apply Applies the changes in the dialog (just like pressing OK) without closing it.

Help Displays the documentation of the selected procedure. If the documentation is empty, the button will be
grayed out.

The newly defined procedure is now available for selection in the operator window. The variables that were used
to determine the procedure interface parameters are now being offered as input parameters for the procedure call.

Please note that a return call has been added at the end of the procedure body. If you create a procedure from
scratch, the newly created procedure body will contain only the return operator initially.

Figure 6.52: Resulting new procedure.

6.17.6 Editing Procedures

The combo box on top of the program window displays the name of the current procedure. You can search for
specific procedures, and select all available procedures from this box. The first element of the list will always be
the main procedure, followed by the local procedures of the current program, followed by the available external,
followed by all referenced procedures and library procedures. The procedure groups are sorted alphabetically.

Procedures can be protected with a password. Those procedures can still be selected from the list, but unless the
correct password has been entered, they will remain in a locked state. If the procedure is locked, a password button
is displayed instead of the procedure body. For more information about protected procedures, see section 5.6 on
page 47.

To view and modify the interface of the current procedure

Figure 6.53: Searching procedures.

G
U

IR
ef

er
en

ce

140 Graphical User Interface

Figure 6.54: Editing a procedure.

• select Procedures . Edit Procedure Interface (page 59)

• or click the button

Using the upper buttons of this dialog, you can select the data associated with the current procedure: The button
General Settings provides access to the procedure name, its type and its parameters.

• General Settings: See section 6.17.5.1 on page 134

• Parameters: section 6.17.5.2 on page 136

The remaining buttons provide access to the documentation of the current procedure. This is described in sec-
tion 6.17.8.

You can step through the individual tab cards of the dialog using the arrow buttons at the bottom of the dialog.

6.17.7 Side Effects of Procedure Changes

Changing the Type or Name of a Local or Library Procedure

If the procedure type is changed to “external”, a new external procedure file will created in the specified directory.
Changing the type “local” to “library” modifies the library file of the selected target library. Conversely, setting
the type of a library procedure to “local” modifies the current program. In all these cases the option Duplicate

internal procedure determines what happens with the original procedure.

If Duplicate internal procedure is unchecked, the local procedure is moved to the new location. Otherwise,
the original local procedure is kept unmodified, and the external procedure gets created (along with other changes
made in the dialog). In this case the newly created external procedure cannot be called from the program because
the internal procedure has a higher priority.

Changing the Procedure Type or Name of External Procedures

If the type or name of an external procedure is changed, you will have to decide whether the original file is kept.
The following options are available:

6.17.8 Providing Procedure Documentation 141

Figure 6.55: Procedure type changed from local to external.

Figure 6.56: Procedure type changed from external to local.

• Keep the original file untouched in addition to the current procedure.

• Remove the original file and keep only the current procedure.

6.17.8 Providing Procedure Documentation

HDevelop supports the preparation of procedure documentation in the procedure interface dialog. Since procedures
are treated like operators, the same documentation slots are available. The procedure documentation is seamlessly
integrated into the online help system. For example, if you select a procedure in the operator window, clicking the
help button will take you to the corresponding page in the help window.

The documentation of the procedure can be entered in multiple languages. The language used for displaying the
procedure documentation in the online help depends on the language set in the preferences of HDevelop. To
edit the procedure documentation in a specific language, select the corresponding entry from the drop-down list
Language.

6.17.8.1 General Documentation

Procedures can be grouped by Group and Chapters.

Group This is the top level element of the content hierarchy in the procedure online help. It can be used to apply
a vendor-specific tag to a group of procedures. The external procedures supplied with HALCON use the
group tag “MVTec Standard Procedures”. If no group is specified, the corresponding procedures are listed

G
U

IR
ef

er
en

ce

142 Graphical User Interface

Figure 6.57: Editing the general documentation of a procedure.

under “No group assigned (local procedures)” or “No group assigned (external procedures)” depending on
their type.

Chapters The text fields next to Chapters can be used to specify chapter and section, so that your procedures
can be grouped thematically in the list at the bottom of the menus Menu Procedures and Menu Operators.

Note that the logical structure created by the chapter and section information does not correspond to the au-
tomatically created directory structure. At least for the external procedures, you can create the corresponding
directory structure afterwards, outside of HDevelop. The recognition of the procedures in HDevelop is still
ensured, as all subdirectories of the external procedure paths are scanned as well. When editing already
existing external procedures, the changed procedures are stored in the paths they were originally found in.

Short Description Enter a short description. Usually, this should be a single sentence that describes the pur-
pose of the procedure. It appears in the overview sections of the online help of the procedures. Additionally,
the short description is displayed in HDevelop’s status bar when the procedure is selected from the menu.

Detailed Description Enter a detailed description of the procedure using Markdown syntax. For more infor-
mation about the syntax, see section 6.17.8.1.

Example

This section of the documentation is intended for code examples. This could be a working program or some
code fragments that illustrate the usage of the procedure.

Suggestions

The first field on this tab card allows you to associate keywords with the procedure.

You can specify suggested successors, predecessors, and alternatives to the current procedure.

Advanced

The text boxes in this tab card are for advanced usage only. We recommend searching the online reference
manual for usage examples.

Attention Notes about special observances when using the procedure. Supports Markdown syntax (see
section 6.17.8.1).

6.17.8 Providing Procedure Documentation 143

Complexity Notes about intricate details about the procedure usage. Supports Markdown syntax (see
section 6.17.8.1).

Warning Usually used to indicate obsolete or deprecated procedures that are kept for backward compatibil-
ity. The warning text should indicate the recommended alternative.
A warning icon is displayed in the left column of the program window. Additionally, if the procedure
is selected, the warning text will be displayed in the operator window as a reminder.
Supports Markdown syntax (see section 6.17.8.1).

References with recommended reading about certain aspects of the procedure. Supports Markdown syn-
tax (see section 6.17.8.1).

Using Markdown to Format Text

Text entered in the following fields is formatted as Github Flavored Markdown:
Detailed Description, Attention, Complexity, Warning, References

For detailed information about this syntax, see https://github.github.com/gfm. See the list below for exam-
ples of common formatting cases.

Inline text formats Emphasize text with *italic* (italic) or make it strong with **bold** (bold).
~strikethrough~ is also possible.

Code blocks Insert a code block (that is, a block of monospaced text) by preceding the lines with four blanks.
Alternatively, use three backticks:

```
my code

```

Lists Insert an ordered list like this:

1. first item

2. second item

Insert an unordered list like this:

* an item

* another item

* a nested item

Tables Insert a simple table like this:

| header col 1 | header col 2 |

|--------------|--------------|

| col 1 row 2 | col 2 row 2 |

| col 1 row 3 | col 2 row 3 |

Links Insert a link like this: [link text](URL)

for example, [This is a link](https://example.org). If you omit the protocol, the URL is inter-
preted relative to the file containing the procedure.

Images Insert an image like this: ![alt text](path/to/image)

Images are referenced relative to the file containing the procedure. They cannot be stored within the proce-
dure file.

References To reference other procedures, operators, or table of contents, use the autolink syntax:

• Procedures: <proc:procedure_name> (for example, <proc:train_dl_model>)

• Operators: <op:operator_name> (for example, <op:train_dl_model_batch>)

• Table of contents: <toc:chapter_name> (for example, <toc:deeplearning_anomalydetection>)

In the Detailed Description field, syntax-highlighting shows whether a reference can be resolved.

The list of available procedures is loaded during the start of the Procedure Interface dialog and only updated when
the dialog is started again. Therefore, features like syntax highlighting will not work for other procedures if they
are created or changed while the dialog is open.

G
U

IR
ef

er
en

ce

https://github.github.com/gfm

144 Graphical User Interface

6.17.8.2 Parameter Documentation

This section of the dialog provides tab cards for all parameters of the current procedure. The documentation
consists of a fine-grained specification of the parameters, and a short description. The specification fields depend
on the parameter type (iconic or control parameter), and on the selected semantics. In the following, the most
common fields of both iconic and control parameters are listed.

Please refer to the Extension Package Programmer’s Manual (Chapter 2.3) for additional information about the
documentation fields (especially, the semantic types).

Iconic Parameter Documentation

Field Meaning
Semantics Specifies the semantic type of the parameter.
Pixel Types Only available for Semantics image. Lists the accepted pixel types. The but-

tons Select All and None toggle the selection of all parameters.
Multi Channel Only available if Semantics = image.

False: Only the first channel of the image is processed,
True: Only a multi-channel image is accepted,
Optional: Images with an arbitrary number of channels are accepted.

Multi Value False: Only a single object (no object tuple) is accepted,
True: Only object tuples are accepted,
Optional: A single object as well as an object tuple is accepted.

Description Short description of the iconic parameter.

Figure 6.58: Editing the iconic parameter documentation of a procedure.

6.17.9 Protecting a Procedure 145

Control Parameter Documentation

Field Meaning
Semantics Specifies the semantic type of the parameter. For some semantic types, addi-

tional subtypes can be selected. The semantic types are split into three groups
which are each sorted alphabetically. The first group contains the basic types,
the second group contains complex types with additional semantics, and the third
group contains handles. The groups are separated by a dividing line.

Type List Specifies the accepted data types.
Default Type Specifies the default data type.
Mixed Types False: All values of a tuple have the same type,

True: Values of different types can be mixed in one tuple.
Default Value The entered value is suggested as the default value by HDevelop.
Values Comma-separated list of suggested values. Check Exclusively to restrict the

selection to the specified values.
Value Min Minimum value for numeric control data. Check Enabled to enforce this set-

ting.
Value Max Maximum value for numeric control data. Check Enabled to enforce this set-

ting.
Multi Value False: The parameter accepts only a single value,

True: The parameter always expects a tuple of values,
Optional: Single values as well as tuple values are accepted.

Description Short description of the control parameter.

Figure 6.59: Editing the control parameter documentation of a procedure.

6.17.9 Protecting a Procedure

The concept of protected procedures is explained in section 5.6 on page 47. The status of a procedure can be
changed via the procedure interface dialog (page 134). To manage the status of multiple procedures at once, click
Menu Procedures . Manage Procedures and select the tab card Manage Passwords (page 118).

G
U

IR
ef

er
en

ce

146 Graphical User Interface

If you want to protect a procedure with a password:

• Select the corresponding procedure in the program window.

• Click to edit the interface of the selected procedure.

• Click the button Password to assign a password to the procedure.

Then, a separate window appears and the new password must be entered twice (see figure 6.60). If both times the
same password is used, clicking OK assigns the password. Otherwise, an error message is displayed and you have
to repeat the password assignment. When a protected procedure is finally saved, it is stored in a binary format.

If you set up a password for the main procedure, you can optionally lock the entire program, and protect all local
procedures with the same password. The same mechanism works for library procedures: You can either protect the
library procedures individually, or protect the entire library at once (see section 6.16.7 on page 117). If individual
local procedures have been password-protected before, this option will only work, if the same password is selected.
Otherwise you will have to remove all other passwords from local procedures before locking the entire program.

Figure 6.60: Entering a password to protect a procedure. The option “Lock entire...” is only available for the main()
procedure.

When HDevelop is started again, the protected procedure is locked. When trying to edit the procedure, for example,
by selecting it from the combo box in the program window, a corresponding message is displayed in the program
window see figure 6.61). Additionally, a password button is displayed in the program window. The procedure
remains unlocked for this session, that is, until you close HDevelop or lock the procedure again manually.

Changing the Status of a Protected Procedure

To change the status of a protected procedure, it must be unlocked. Use the procedure interface dialog (page 134)
to change the password or remove the password entirely.

Lock Lock the protected procedure and its body cannot be accessed in the current session without supplying the
password again.

Remove Removes the password. When the procedure is saved, it is no longer protected.

New password The password window is displayed and a new password can be assigned.

Cancel The operation is canceled without altering the status.

Figure 6.61: A locked procedure.

6.17.10 Profiler 147

Figure 6.62: Changing the status of a protected procedure..

Warning

When working with protected procedures, be aware that the password cannot be reconstructed, so be very careful
not to forget it and not to repeat a typing error when assigning it!
The option “Unlock entire...” is only available if local procedures have been locked at once.
Note that, in some situations protected procedures behave differently from common procedures. In particular,
as they cannot be viewed and modified by unauthorized users, they also cannot be copied, printed, or exported
to any programming language (however, they can be duplicated using the menu entry Menu Procedures .
Duplicate...). Additionally, if a protected procedure contains a call to another procedure for which the in-
terface was changed, the procedure call is not adapted to the changes but is disabled for the current program.

6.17.10 Profiler

The built-in profiler analyzes the runtime behavior of HDevelop programs. You can use the profiling data to
evaluate the overall program execution, to optimize its performance, and to find bottlenecks.

The profiler measures the processing times in one of two modes:

• In the operator time mode, the profiler counts operator and procedure calls and measures the processing
times of operator calls.

The operator time is the appropriate measure if you plan to export your HDevelop program to a programming
language.

• In the execution time mode, the profiler measures the operator time and additionally the overhead of each
operator call inside HDevelop.

The execution time is the appropriate measure if you run the program inside HDevelop or HDevEngine.

Keep the following in mind when profiling your code:

• Disable GUI updates by calling the convenience procedure dev_update_off() at the beginning of your
program.

• Run the code to be profiled a couple of times and use the average profiling data to get more accurate results.

• Reduce the number of concurrent (background) processes.

• Avoid stop and wait_seconds instructions, or override these two operators; see Override Operator

Behavior (page 125).

To activate the profiler, click Execute . Activate Profiler (page 56).
When the profiler is activated, each program execution collects profiling data.

To reset the profiler data, click Execute . Reset Profiler (page 56),

To deactivate the profiler, click Execute . Deactivate Profiler (page 56).

The profiling results are displayed in the program window. In addition, a summarized view of the runtime statistics
is available.

G
U

IR
ef

er
en

ce

148 Graphical User Interface

Figure 6.63: Profiling results of the first program execution.

If the profiler is enabled, the tool bar of the program window contains some additional profiler-related buttons

The profiling data is displayed in a separate column of the program window

By default, the total execution time of each program line is displayed. The gray bars illustrate the execution
times in relation to the largest value

The display area can be resized by dragging its left edge

6.17.10.1 Profiler Display

To illustrate the way the profiler works, the HDevelop program solution_guide/basics/color_simple.hdev

is loaded and executed (see figure 6.63).

The options described below are available in the drop-down menu of the toolbar icon or the context menu of
the profiler area.

Activate/Deactivate Display / Activate Only selected See section 6.17.10.3 on page 150.

Number of Calls Displays how many times each program line has been executed in total. This value is accu-
mulative until the profiler is reset.

Total Execution Time Displays the total processing time of each program line. This value is accumulative
until the profiler is reset.

Average Execution Time Displays the average processing time of each program line. This value differs from
the total processing time if the corresponding program line has been executed more than once, for example,
in a loop. The average processing time is more meaningful if the program is reset and run multiple times.

Minimum Execution Time Displays the minimum processing time of each program line. This value is only
meaningful if the corresponding program line has been executed more than once, for example, in a loop.

Maximum Execution Time Displays the maximum processing time of each program line. This value is only
meaningful if the corresponding program line has been executed more than once, for example, in a loop.

Last Execution Time Displays the processing time of the last execution of each program line.

The processing time is displayed in one of two modes as explained in section 6.17.10 on page 147, depending on
the setting in the context menu:

Operator Time Measures operator and procedure calls.

6.17.10 Profiler 149

Figure 6.64: Runtime statistics.

Execution Time Measures calls including the additional overhead inside HDevelop.

The display can be toggled between duration values and percentages:

Time Display the processing times as absolute values. The unit of measure defaults to ms and is adjusted appro-
priately, for example, it switches to seconds once the value exceeds 1000ms. To specify the unit of measure
explicitly, switch to the runtime statistics window described in section 6.17.10.2.

Percentage Display the processing times as percentages. 100% refers to the accumulated times inside main, or
the currently displayed procedure, respectively.

Reset profiler values.

Open runtime statistics (see section 6.17.10.2).

6.17.10.2 Runtime Statistics

This window displays the accumulated profiling data of the procedure that is currently displayed in the active
program window (or all procedures, see below).

The table rows can be sorted by clicking the corresponding headers. Two different display modes are available:

Operators In this mode, the profiling data is displayed per operator/procedure call, that is, multiple calls of the
same operator/procedure are summarized.

Note that the sum of all calls that comprise the program can be less than the measured duration of the main
program as the latter also includes the overhead of the operating system.

Program Lines In this mode, the profiling data is displayed per program line.

Save the runtime statistics as a plain text file (.txt or .csv). Each line contains a table row, and the columns
are separated by tabs.

Copy the selected entries to the clipboard. If no entries are selected, the entire table is copied.

Toggle the display status of the selected profiler lines (see section 6.17.10.3). This option is only available if
the display is set to “Program Lines”.

G
U

IR
ef

er
en

ce

150 Graphical User Interface

Show execution time.

Show operator time.

ms Display times in milliseconds.

s Display times in seconds.

h Display times in hours.

% Display values as percentages. If percentages are selected, the values refer to the accumulated times of the
entire program, the run-time of main corresponds to 100%.

Include runtime statistics of procedures in display.

Include runtime statistics of operators in display.

Include program lines with zero calls.

Usually, the runtime statistics window displays the profiler data of the procedure that is currently displayed in
the active program window. Turn this button on to show the profiling data of all procedures.

In general, deactivated profiler lines are not listed in the runtime statistics window (see section 6.17.10.3). If
this button is on, deactivated profiler lines will be displayed in light gray so that they can be activated again.

6.17.10.3 Selective Profiler Display

The profiler collects data for all executed program lines. In general, the collected data is also displayed in the pro-
gram window and the runtime statistics window. This behavior is not always desirable. In many cases, the runtime
statistics of only a small portion of the program code is relevant when evaluating its performance. Accordingly,
the display of profiler data in both the program window and the runtime statistics window can be restricted to a
selection of profiler lines.

Profiler lines can be selected in three different ways:

• Drag over a range of lines in the profiler area (see figure 6.65).

• Click a single line in the profiler area, and
�� ��Shift click another line to select the range between those lines.

• Click the first line in the profiler area, and then
�� ��Ctrl click additional lines to select a non-contiguous selection

of lines.

In all cases, the selection is also highlighted in the left part of the program window until the mouse button is
released. This visualization supports you in selecting the desired program lines, which can be difficult if the
program window is very wide.

The values of the selected profiler lines are summed up and displayed in the status bar as shown in figure 6.66.

To display the profiler data of only the selected lines, click Activate Only selected in the context menu of the
profiler area. The result is shown in figure 6.67. Note that the gray bars are automatically adjusted to the selected
data.

To toggle the status of specific profiler lines, select the corresponding lines as described above and click
Activate/Deactivate Display in the context menu of the profiler area.

The runtime statistics window is updated to list only activated program lines as shown in figure 6.68 on page 152.
To remove additional lines from this window, select the corresponding lines and click the button. Deactivated
lines can be re-displayed in light gray if the button is turned on.

6.18 Quick Navigation Window 151

Figure 6.65: Selecting program lines in the profiler.

Figure 6.66: Profiler values.

Selected values are summed up in the status bar

6.18 Quick Navigation Window

The quick navigation window contains a listing of program lines that share a common property. Clicking an
entry focuses the corresponding program line in the active program window. If the selected procedure is already

Figure 6.67: Activate selected program lines in the profiler.

G
U

IR
ef

er
en

ce

152 Graphical User Interface

Figure 6.68: Runtime statistics of selected program lines.

Figure 6.69: Managing program lines in the quick navigation window.

displayed in a program window tab, the corresponding tab is activated. Otherwise, the current view switches to the
selected procedure.

It is possible to activate, deactivate, copy, cut, or delete one or more of the selected program lines directly from the
quick navigation.

The “common properties” are available as tab cards:

6.18.1 Invalid Lines

This tab card lists all invalid program lines within the currently selected scope. All refers to all procedures,
Program refers to the main procedure and all procedures it uses, and Current Procedure refers to procedure
displayed in the active program window. Examples of invalid lines are unresolved procedure calls, operator or
procedure calls with a wrong number or type of parameters, or syntax errors.

Clicking an entry focuses the corresponding program line in the active program window so you fix the error. If the
selected procedure is already displayed in a program window tab, the corresponding tab is activated. Otherwise,
the current view switches to the selected procedure.

If you make changes to the program while the display of invalid program lines is still open, you will need to click
the button Refresh to update the entries.

Using the context menu, you can perform the following actions on the selected program lines:

• Copy Values (page 54)

6.18.2 Find Results 153

• Cut (page 54)

• Delete (page 54) (also by pressing
�� ��Del)

• Activate (page 54)

• Deactivate (page 54)

Figure 6.70: Managing invalid program lines in the quick navigation window.

6.18.2 Find Results

This tab card provides a listing of program lines that match a previous “find all” operation. Click the button Open

Find/Replace Dialog to perform a “find all” operation. More info (page 72)

6.18.3 Breakpoints

This tab card lists all variables or program lines marked with a breakpoint (see figure 6.72). Information about the
breakpoints is given in the column Context: Breakpoints on variables list the variable name, while line-based
breakpoints list the program line (its line number is given in the column Line).

Clicking the entry of a line-based breakpoint focuses the corresponding program line in the active program window.
If the selected procedure is already displayed in a different program window tab, the corresponding tab is activated.
Otherwise, the current view switches to the selected procedure.

Clear the breakpoints of the selected program lines and immediately remove the corresponding entries from
the list. This action can also be triggered from the context menu, or by pressing

�� ��Del .

Clear all breakpoints and remove all entries from the list, leaving you with an empty window.

Activate all breakpoints at once. This action can also be triggered from the context menu.

Deactivate all breakpoints at once. This action can also be triggered from the context menu.

Individual breakpoints can be activated or deactivated by clicking the check boxes.

See section 6.21.1 on page 161 for information about breakpoints on variables and section 6.17 on page 126 for
line-based breakpoints.

G
U

IR
ef

er
en

ce

154 Graphical User Interface

Figure 6.71: Search results of the “find all” operation.

Figure 6.72: Managing breakpoints in the Quick Navigation window.

Breakpoint on variable

Line-based breakpoint

6.18.4 Bookmarks

This tab card lists all program lines that are currently bookmarked. Clicking an entry focuses the corresponding
program line in the active program window. If your program contains many bookmarks, this will be more transpar-
ent and convenient then repeatedly jumping through your selection of bookmarks with

�� ��F11 and
�� ��Shift+F11 . If the

selected procedure is already displayed in a program window tab, the corresponding tab is activated. Otherwise,
the current view switches to the selected procedure.

Clear the bookmarks of the selected program lines and immediately remove the corresponding entries from the
list. This action can also be triggered from the context menu, or by pressing

�� ��Del .

Clear all bookmarks and remove all entries from the list, leaving you with an empty window.

6.19 ROI Window

Using the ROI window you can draw and manage multiple figures interactively. These figures consist of an
arbitrary collection of geometric elements or free-form drawings. Ultimately, these figures are interpreted as ROIs

6.19 ROI Window 155

Figure 6.73: Managing bookmarks in the quick navigation window.

or XLDs that can be used in your current program by generating the appropriate program lines. You can also
perform simple interactive measurements in that you specify a known dimension and thus translate pixels to real-
world units.

As an introductory example, the image shown in figure 6.74 shall be used as the base image for a completeness
check application. To determine the location and the alignment of the chip in subsequent images, parts of its
imprint will be used as a landmark. Therefore, an ROI has to be created. It would be cumbersome to generate an
ROI based on written-down pixel coordinates. Instead, it is much easier to draw a figure right into the image and
let HDevelop generate the corresponding instructions.

Figure 6.74: Base image for the creation of an ROI.

Example image

Opened dialog

Generating an ROI Interactively

• Click the tool bar icon to create a new figure.

This will open the dialog shown in figure 6.74 which will act as a tool box for your new figure.

G
U

IR
ef

er
en

ce

156 Graphical User Interface

Figure 6.75: Drawing ROI rectangles.

Rectangle 1

Rectangle 2

By default, the figure type is set to ROI (cf. in the tool bar), which is just what we want for this example.

• Click to create a rectangle.

Click and hold inside the graphics window to draw an initial rectangle.

You can modify the rectangle by dragging its sides or corners. Make the rectangle match the big label on the
chip (see figure 6.75).

Click the right mouse button to confirm the rectangle and it will be created in the toolbox.

• Repeat the last step to create another rectangle and make it match the lower part of the label (see figure 6.75
).

• Click to generate program code in the current program.

gen_rectangle1 (ROI_0, 197.724, 233.807, 235.947, 360.162)

gen_rectangle1 (TMP_Region, 260.088, 326.066, 284.229, 398.269)

union2 (ROI_0, TMP_Region, ROI_0)

In this example, the iconic variable ROI_0 corresponds to the region defined by the two rectangles.

ROI Opacity

You can adapt the opacity of the ROIs by dragging the slider.

Figure 6.76: ROI Opacity.

Editing the Figure

Figure changes are not recorded in the undo buffer and cannot be reverted. However, you can save all figures in
the tool box and load them later using the menu File.

6.19 ROI Window 157

Figure 6.77: An ROI made of two rectangles.

You can make changes to a figure by clicking its individual constituent parts to select them. In figure 6.77, the
upper rectangle is selected and can be modified by dragging its handles. You can also edit the selected element in
the mode it was created in by clicking (right-click to confirm the changes).

The corresponding values in the tool box will be updated accordingly. You can also edit the values in the tool
box parametrically. The parameters Perimeter and Area are calculated depending on the other parameters of the
rectangle. They can not be modified directly and are therefore grayed out.

If you click the upper rectangle twice, the entire figure will be selected and can be dragged with the mouse.

In general, if the figure consists of overlapping elements, the first click will select the topmost element. Each
following click will select the element below the selected one. When the bottommost element is reached, the next
click will select the entire figure. In case of a very complex figure with many stacked elements it might be easier
to select a distinct element by clicking the corresponding data block in the tool box.

Delete Elements From the Figure

To delete the selected element, press
�� ��Del , or click . All figures can be deleted by clicking .

You can also add additional geometric elements to the figure by clicking the corresponding icons on the tool bar.

Add Additional Figures to the Tool Box

As already mentioned, the tool box supports the creation of multiple figures. Click to add a new figure to the
tool box. When you subsequently draw new elements, they will be added to the new figure. Multiple figures are
converted to an object tuple when generating code.

Mode Selection

The tool box supports three modes of operation. The modes can be selected from the drop-down button of the tool
bar or from the menu ROI Type:

(ROI) Select this mode if you want to generate a pixel-based region of interest. The ROI consists of geometric
elements. The faces defined by these elements are connected by set operations (see below).

For each element a masking mode can be toggled independently by clicking the corresponding icon in the
tool box:

The default masking mode selects the inside of the element, for example, the inner area of a circle.

The complement masking mode selects the outside of the element, for example, everything outside of a
circle.

(XLD) Select this mode if you want to generate a vector-based closed-contour XLD (or a line XLD). The XLD
consists of geometric elements. The contours defined be these elements are connected by set operations (see
below).

G
U

IR
ef

er
en

ce

158 Graphical User Interface

union intersection difference xor

ROI

XLD

A B

Figure 6.78: Set Operations.

(Path) Select this mode if you want to generate a vector-based path XLD. The path consists of geometric
elements. The individual elements of the path are connected with straight lines. This connection is done
automatically. Of the two endpoints of each element the one that is closest to an endpoint of another element
is connected to that endpoint.

Depending on the selected mode, different geometric elements are available in the tool box:

Tool Type ROI XLD Path
line X X X
circle X X -
circular arc - X X
ellipse X X -
elliptic arc - X X
axis aligned rectangle X X -
rotated rectangle X X -
arbitrary region X X -

Set Operations

The elements of a figure are connected by set operations. In the case of ROIs, applying the set operations deter-
mines the final face of the compound region. For closed-contour XLDs, applying the set operations determines the
final contour of the compound XLD. Set operations are not meaningful and therefore not available in path mode.

The set operation of the next new element can be selected from the drop-down button of the tool bar or the menu
Operations. The set operation of an existing element can be changed by clicking the corresponding icon in the
element’s data block.

The following set operations are available (see figure 6.78 for an illustration):

• (union of A and B)

• (intersection of A and B)

• (difference of A minus B)

• (xor, A or B exclusively)

Interactive Measurements

Usually, all dimensions in the tool box are given in pixels. To convert pixel values to real-world dimensions, a
simple calibration can be performed, that is a known dimension has to be specified.

See figure 6.79 for an example. The length of the line is known, so it can be used for the calibration.

6.20 Thread View / Call Stack 159

Figure 6.79: Performing 2D calibration.

• Click to open the 2D calibration panel.

• Select the desired unit from the drop-down combo box Unit.

• Select Set 2D Calibration to start 2D calibration mode.

• Click the Length value in the data block of the line, and specify the known dimension, for example, 10 for
10mm.

• Click Modify Regions to leave 2D calibration mode. Now, any changes to the parameters of the data block
will again modify the figure itself, leaving the calibration untouched.

Now, all dimensions are given in the selected unit.

6.20 Thread View / Call Stack

This window displays information about the current execution status of the program.

The Thread View in the upper half displays information about all the threads that have been started (see sec-
tion 8.11.4 on page 287).

The Call Stack in the lower half contains a list of the names of all procedures that are currently called on
HDevelop’s internal call stack. The top-most procedure call belongs to the most recently called procedure, the
bottom-most procedure call always belongs to the main procedure. Clicking a procedure call in the dialog makes
the selected procedure call the current procedure call and thus the procedure belonging to the selected procedure
call the current procedure.

When you click a procedure call that belongs to a locked procedure (see section 5.6 on page 47), you can only see
the procedure body if you enter the correct password into the program window.

6.21 Variable Window

There are two kinds of variables in HALCON, corresponding to the two parameter types of HALCON: iconic
objects (images, regions, and XLDs) and control data (numbers, strings, handles). The corresponding variables
are called iconic and control variables. These variables can possess a value or can be undefined. An undefined
variable is created, for example, when loading a program or after inserting an operator with a new variable that is
not executed immediately into a program. You can access these undefined variables only by writing to them. If you
try to read such a variable, a runtime error occurs. If a variable obtains a value, the variable type is specified more
precisely. A control variable that contains, for example, an integer is of type integer. This type might change to
real or a tuple of integer after specifying new values for this variable. But it always remains a control variable.

G
U

IR
ef

er
en

ce

160 Graphical User Interface

Figure 6.80: Thread View / Call Stack.

Similarly, this is the case for iconic variables, which can contain regions, images, or XLDs. You can assign new
values to an iconic variable as often as you want to, but you cannot change its type so that it becomes a control
variable.

New variables are created in the operator dialog area during specification of operator or procedure call parameters.
Here, every sequence of characters without single quotation marks is interpreted as a variable name. If this name
did not exist before, the variable is created in the operator dialog area by pressing OK or Enter. The variable type
is specified through the type of the parameter where it was used for the first time: Variables that correspond to an
iconic object parameter create an iconic variable; variables for a control parameter create a control variable. Every
time an operator or procedure call is executed, the results are stored in variables connected to its output parameters.
This is achieved by first deleting the contents of the variable and then assigning the new value to it.

The variable window is similar to a watch window used in window-oriented debuggers. Inside this window you are
able to keep track of variable values. Corresponding to the two variable types, there are two areas in the variable
window. One for iconic data (above or left) and the other for control data (below or right). You can toggle the
orientation of the two parts of the variable window. To do this, double-click the dividing line between both
parts. You can also drag that line to resize the parts.

All computed variables are displayed showing their iconic or control values (unless the automatic update has been
switched off, see section 6.16.14 on page 124). In case of a tuple result that is too long, the tuple presentation

Figure 6.81: Variable window with instantiated iconic and control variables.

6.21.1 Breakpoints on Variables 161

is shortened, indicated by three dots. In this case, the full content of a variable can be displayed in an inspection
window by double-clicking the value list. See also the following sections.

6.21.1 Breakpoints on Variables

In addition to line-based breakpoints (see section 6.17 on page 126), breakpoints can also be set on variables.
Right-click a variable name and select Set/Clear Breakpoint on Variable. Variables with breakpoints are
marked with next to their name.

Once a breakpoint has been set on a variable, the program execution stops whenever its value changes. A change
of value is detected in the same way the HDevelop operation != works (see section 8.5.10 on page 265):

• Iconic objects: a value change is triggered if the variable refers to a different object in the database (see also
test_equal_obj).

• Tuples: A change of the data type (for example, integer to real) does not necessarily trigger a value change.
In the following example the second assignment would not trigger a variable breakpoint on tuple:

tuple := [1,2,3]

tuple[1] := 2.0 // 2 == 2.0

Using clear_obj does not trigger a variable breakpoint. Use dev_clear_obj instead.

When a breakpoint on a variable triggers, the program execution stops and HDevelop highlights the corresponding
variable in the variable window. If the variable is not currently displayed in the selected tab of the variable window,
HDevelop switches to the tab Auto (see below).

Information about the event is displayed in the status bar, for example, HDevelop displays both the old and the
new value of a tuple.

6.21.2 Managing Variables

In large programs the variable window can become quite cluttered, which makes watching selected variables
difficult. Therefore, you can customize the selection of displayed variables.

All All variables used by the current procedure are displayed at once. Global variables (see section 8.3.2) are
marked with .

Auto The variables of the current and the previous operator call are displayed. This is useful when single-stepping
through the program, because only the variables relevant to the current context are displayed.

User A user-defined selection of variables is displayed. If the tab User is active, variables can be added from a
list in the context menu. In the other tabs variables are added by selecting them first and clicking Add to

User Tab in the context menu.

It is also possible to select a variable name in the program window and drag it to the variable window. The
corresponding variable will then be added to the watched variables, and the tab User will be activated.

Global All global variables (see section 8.3.2) of the current program are displayed. This includes global variables
in external procedures, even if they are not used in the current program.

The context menu of the global variables includes an additional entry Declared in. It lists the names and
line numbers of the procedures that declare (and thus use) the corresponding global variable. Click an entry
to jump to the corresponding location in the program window.

G
U

IR
ef

er
en

ce

162 Graphical User Interface

Figure 6.82: Displaying information about an iconic variable with a reduced domain.

6.21.3 Iconic Variables

The iconic variables are represented by icons, which contain an image, a region or an XLD, depending on the
current value. The icons are created depending on the type of data according to the following rules:

• For images the icon contains a zoomed version of them, filling the icon completely. Due to the zooming onto
the square shape of the icon, the aspect ratio of the small image might be wrong. If there is more than one
image in the variable, only the first image is used for the icon. Similarly, for multi-channel images only the
first channel is displayed. An exception is made for images with three channels: These are displayed as color
icons (RGB).

The domain of the image is not reflected in the displayed icon. Information about the domain can be obtained
from the tool tip which appears when the mouse cursor points to the icon. See figure 6.82 for an illustration.

• Regions are displayed by first calculating the smallest surrounding rectangle and then zooming it so that
it fills the icon using a border of one pixel. In contrast to images, the aspect ratio is always correct. This
can lead to black bars at the borders. The color used to draw the region is always white without further
modifications (except zooming).

• XLD data is displayed using the coordinate system of the largest image used so far. The color used for XLD
objects is white on black background.

Because of the different ways of displaying objects, you have to be aware that the coordinates cannot be compared.
The variable name is positioned below each icon. They are displayed in the variable window in the order of
occurrence or name from left to right. If there is not enough space, a scrollbar is created, which you can use to
scroll the icons.

Displaying Iconic Variables

If you use images of different sizes in a program, the system uses the following output strategy for an automatic
part reset, depending on the chosen resize mode (page 58): Every window keeps track of the size of the most
recently displayed image. If you display an image with a different size, the system modifies the graphics window
coordinate system in a way that the image is visible completely in the graphics window. In Full Stretch mode,
the part is set to the full image size. In No Stretch mode or Keep Aspect Ratio mode, the part is extended to
fit the full image in a 1:1 aspect ratio with black bars on one side.

If a partial zooming has been activated before (see section 6.8 on page 74), it is suppressed.

6.21.3 Iconic Variables 163

Displaying Information About Iconic Variables

You can get information about an instantiated variable by placing the mouse pointer over the corresponding icon
in the variable window. See also figure 6.82 for an illustration. The information depends on the contents of the
corresponding variable:

• Images: The image type and size and the number of channels is displayed. If the iconic variable contains
multiple images, the properties of the first image are reported.

• Regions: The area and the center of the region is displayed. If the iconic variable contains multiple regions,
the properties of the first region are reported.

• XLDs: The number of contour points and the length is displayed. If the iconic variable contains multiple
XLDs, the properties of the first XLD are reported.

Context Menu

Clicking an icon with the right mouse button opens a context menu with several options:

Display: Display the selected iconic variable in the active graphics window. Regions and XLDs are displayed on
top of the previous contents of the active graphics window.

Display Channel: Display a single channel of the selected iconic variable in the active graphics window. This
menu lists up to 15 channels. If the iconic variable contains more than 15 channels, you can access the
remaining channels by clicking “Select...”, which opens an auxiliary window listing all channels.

This entry is only available if the selected iconic variable contains a mult-channel image.

Display Content: Display a single object of the selected iconic variable in the active graphics window. This
menu lists up to 15 objects. If the iconic variable contains more than 15 objects, you can access the remaining
objects by clicking “Select...”, which opens an auxiliary window listing all objects.

This entry is only available if the selected iconic variable contains multiple objects, for example, multiple
images, regions, or XLDs.

Clear / Display: Clear the active graphics window before displaying the selected iconic variable.

Clear Variable: Clear the selected iconic variable. The contents of the variable become undefined.

Save: Save the contents of the selected iconic variable to a file. Depending on the content type of the vari-
able (image, region, XLD, ...), different file formats are offered. See also: write_image, write_region,
write_contour_xld_dxf, write_polygon_xld_dxf, fwrite_serialized_item.

Set/Clear Breakpoint on Variable: Toggle a breakpoint on the variable under the mouse cursor (see sec-
tion 6.21.1 on page 161).

Activate/Deactivate Breakpoint on Variable: Toggle activation of breakpoint on the variable under the
mouse cursor.

Add to User Tab: The selected variable is added to the tab User.

Find Variable: Open the Find/Replace... (page 71) dialog with the name of the selected variable prese-
lected.

Insert dev_display() into program: Insert the operator dev_display into the program window at the IC.
The parameter of the inserted instruction is the name of the selected iconic variable.

Shortcut:
�� ��Ctrl + double-click variable icon.

Declared in (global variables only) List the names and line numbers of the procedures that declare (and thus
use) the selected global variable. Click an entry to jump to the corresponding location in the program
window.

Sort by Name: Sort all variables in alphabetical order.

Sort by Occurrence: Sort the variables in the same order as they are defined in the program.

G
U

IR
ef

er
en

ce

164 Graphical User Interface

Figure 6.83: Interactive channel selection from an RGB image.

Channel 1: red

Channel 2: green

Channel 3: blue

Update Variables: Toggle whether variables will be updated during program execution. This is the same setting
as in the runtime preferences (see section 6.16.14 on page 124).

Add Variable (tab User only): This submenu contains a list of all variables that are currently not displayed in
the tab User. Click a variable name to add the corresponding variable to the tab.

Remove from User Tab (tab User only): The selected variables are removed from the tab User.

You can display the corresponding iconic variable in the active graphics window (with or without clearing the
window first), and you can clear the iconic variable. If an iconic variable contains multiple items, you can also
select a specific item from a submenu. Up to 15 items are listed in this menu. If an iconic variable contains
more than 15 items, the remaining items can be accessed by clicking Select.... If you click Select... in this
submenu, you can quickly browse the items of the iconic variable from a dialog. This also works for multi-channel
images. See figure 6.83 for an example.

Visualization of Iconic Variables

Usually, regions, images, and XLDs are represented in variable icons. Besides this, there are three exceptions,
which are shown by special icons:

• Undefined variables are displayed as a question mark icon . You can write to but not read them, because
they do not have any value.

• Brackets are used if a variable is instantiated but does not contain an iconic object (empty tuple). This
can be the case using operators like select_shape with “wrong” specified thresholds or using the opera-
tor gen_empty_obj. Such a value might be reasonable if you want to collect iconic objects in a variable
gradually in a loop using concat_obj. Here, an empty tuple is used as starting value for the loop.

6.21.4 Control Variables 165

• A last exception is an empty region. This is one region that does not contain any pixels (points), that is the
area (number of points) is 0. You must not confuse this case with the empty tuple, because there the area is
not defined. The empty region is symbolized by an empty set icon .

6.21.4 Control Variables

To the right of the variable name you find its values in the default representation. If you specify more than one
value for one variable (tuple), they are separated by commas and enclosed by brackets. If the number of values
exceeds an upper limit, the output is clipped. This is indicated by three dots at the end of the tuple.

Context Menu

Inspect: Inspect the values of the selected control variables in an auxiliary window (see section 6.22). The
display depends on the semantic type of the selected control variable:

• Tuples

• Vectors (page 168)

• Handles (page 169)

• Matrices (page 169)

• Poses (page 169)

• Image acquisition devices (page 170)

• Functions (page 170)

• 3D object models (page 175)

Inspect as Handle Force the generic handle inspect window for all types (see section 6.22.3 on page 169).

Inspect as Tuple Force the tuple inspect window for all types (see section 6.22.1).

Plot as Function Plot the tuple values (see section 6.22.7 on page 170). The variable is assumed to contain y
values for equidistant x values. This entry is only available for numeric tuples.

Plot as X/Y pair(s) Generate a scatter plot of two variables selected using
�� ��Ctrl . This entry is only available

if two variables containing numeric tuples of equal length are selected.

Copy: Copy the values of the selected variables to the system clipboard. If the variable window has the keyboard
focus,

�� ��Ctrl-C can be used as a shortcut. Tuples with zero or more than one values are returned in tuple
notation: [.., ..]. If multiple variables are selected, the tuples of the different variables are separated by
a new line.

Clear Variable: Clear the selected control variables. The contents of the variables become undefined.

Save: Save the contents of the selected control variable to a file. Depending on the content type of the variable
(tuple, handle, ...), different file formats are offered. See also: write_tuple, write_bar_code_model,
write_calib_data, write_data_code_2d_model, write_matrix, write_object_model_3d.

Set/Clear Breakpoint on Variable: Toggle a breakpoint on the variable under the mouse cursor (see sec-
tion 6.21.1 on page 161).

Activate/Deactivate Breakpoint on Variable: Toggle activation of breakpoint on the variable under the
mouse cursor.

Add to User Tab: The selected variables are added to the tab User.

Find Variable: Open the Find/Replace... (page 71) dialog with the name of the selected variable prese-
lected.

Declared in (global variables only) List the names and line numbers of the procedures that declare (and thus
use) the selected global variable. Click an entry to jump to the corresponding location in the program
window.

G
U

IR
ef

er
en

ce

166 Graphical User Interface

Sort by Name: Sort all variables in alphabetical order.

Sort by Occurrence: Sort the variables in the same order as they are defined in the program.

Update Variables: Toggle whether variables will be updated during program execution. This is the same setting
as in the runtime preferences (see section 6.16.14 on page 124).

Add Variable (tab User only): This submenu contains a list of all variables that are currently not displayed in
the tab User. Click a variable name to add the corresponding variable to the tab.

Remove from User Tab (tab User only): The selected variables are removed from the tab User.

6.22 Variable Inspect

See also: dev_inspect_ctrl.

Double-clicking a control variable opens an inspection window next to the variable window. The type of the
inspection window depends on the semantic type of the variable, for example, “Matrix Inspect” for matrices,
“Handle Inspect” for handles, and so on.

You can also select multiple control variables at once in the variable window by holding down the
�� ��Ctrl key. To

inspect these variables, right-click the selected variables and select Inspect. For each inspected variable type, a
new tab card is opened in the inspection window. Variables of the same semantic type are grouped in a single tab
card.

6.22.1 Inspecting Tuples

Control variables containing tuples are displayed in a tabular format (see figure 6.84). This is especially useful for
the inspection of tuples with a large number of values.

In addition to the tuple values, some statistical data can be displayed:

Figure 6.84: Control variable inspection.

Variable names

List of tuple values

Statistics - select from context menu

6.22.1 Inspecting Tuples 167

• minimum value

• maximum value

• sum of values

• mean value

• deviation

• value types

• number of values

• semantics (if appropriate).

You can select, which statistical data is displayed by right-clicking the statistics table and selecting the correspond-
ing entries.

The selected values of an inspection window can be copied to the system clipboard using the context menu or
pressing

�� ��Ctrl+C . The columns of the copied values are separated by tabs and the rows are separated by newlines,
or presented as an HTML table (depending on the application the values are pasted into).

Editing Variable Values

To change a variable value, click into the corresponding cell and type the new value followed by
�� ��Return .

You enter... it becomes
text ’text’ (string)
’text’ ’text’ (string)
42 42 (integer)
’42 ’42’ (string)
0.7 0.7 (real)
2e2 200.0 (real)

Depending on the variable type, only certain value types can be allowed, for example, matrix variables (see below)
contain only real values.

You can also add new elements to a tuple: Instead of entering a single value, enter a list of values enclosed in
square brackets (tuple notation).

For example:

Variable Inspect

1

2 -> [2,22,222]

3

results in the following tuple:

1

2

22

222

3

Do not forget to include the original value (2) if you want to extend the tuple.

Additional values can be appended at the end of the tuple by entering them into the column labeled +.

To delete a variable value, press
�� ��Delete or enter an empty tuple:

Variable Inspect

1

2 -> []

3

G
U

IR
ef

er
en

ce

168 Graphical User Interface

Figure 6.85: Vector variable inspection.

results in the following tuple:

1

3

6.22.2 Inspecting Vectors

Vectors are container variables for tuples, iconic objects, or vectors. See section 8.6 on page 270 for a detailed
description. Because vector variables can be multi-dimensional, the inspection window presents their values in a
tree-like fashion.

vector := {{[1],[2]}, {[3],[4]}, {[5],[6]}}

The example variable vector is a two-dimensional vector. It contains three vector variables which in turn contain
two single-element tuples each. Figure 6.85 shows the inspection window of this variable. Depending on the
dimensionality of the inspected vector variable, the sub-nodes can be further inspected by clicking the icon in
front of the corresponding element. If the inspected vector variable contains control values as in the example, the
individual values at the leafs of the tree can be edited like tuple variables (see section 6.22.1 on page 167).

In addition to the tuple values, some statistical data can be displayed:

• minimum value

• maximum value

• sum of values

• mean value

• deviation

• value types

• number of values

• semantics (if appropriate)

• vector dimension.

You can select the statistical data to be displayed by right-clicking the statistics table and selecting the correspond-
ing entries.

6.22.3 Inspecting Handles 169

6.22.3 Inspecting Handles

Handles are references to complex data structures. The handle inspect window displays the attributes and values
of the selected handle variable. The values are read-only, they cannot be modified in the dialog. They are updated
automatically if they change in the background.

Figure 6.86: Inspection of a window handle variable.

Depending on the semantic type of the referenced data, specific inspection windows are available which are de-
scribed in the following sections. Double-clicking a handle variable with no specific inspection window always
opens the handle inspect window.

When inspecting handles that contain 3D object models, those can be visualized directly from within the handle
inspect window by checking the checkbox next to them. This is also possible for 3D object models that are
contained in, for example, dictionaries. Note that when visualizing multiple 3D object models from within a
handle inspect window, all those models will be shown in a single visualization window.

6.22.4 Inspecting Matrices

Control variables that reference a matrix are displayed in a tabular format as displayed in figure 6.87.

The selected values of an inspection window can be copied to the system clipboard using the context menu or
pressing

�� ��Ctrl+C . The columns of the copied values are separated by tabs and the rows are separated by newlines,
or presented as an HTML table (depending on the application the values are pasted into).

Figure 6.87: Inspection of a matrix control variable.

6.22.5 Inspecting Poses

Control variables that reference a pose are displayed in a tabular format as displayed in figure 6.88.

The selected values of an inspection window can be copied to the system clipboard using the context menu or
pressing

�� ��Ctrl+C . The columns of the copied values are separated by tabs and the rows are separated by newlines,
or presented as an HTML table (depending on the application the values are pasted into).

G
U

IR
ef

er
en

ce

170 Graphical User Interface

Figure 6.88: Inspection of a pose control variable.

Figure 6.89: Inspecting an image acquisition device handle.

6.22.6 Inspecting Image Acquisition Device Handles

For an image acquisition device handle, a dialog with basic image acquisition device parameters is opened (see
figure 6.89). It displays the name, image size, device, port, and other features of the image acquisition device.

The toggle button Online allows you to grab images continuously and to display them in the active graphics
window. Multiple online inspections from different image acquisition devices at the same time are also supported
by opening additional graphics windows before clicking the corresponding button Online. If an error occurs
during grabbing, it is displayed in the status bar of the dialog.

6.22.7 Inspecting Functions

Control variables with the semantic type function_1d are displayed as a function plot by default upon inspection.
It is also possible to plot the data of variables containing arbitrary numeric tuples (length > 1) by selecting Plot

as Function from the context menu of the variable window. It is assumed that these variables contain y values
for equidistant x values. Finally, you can select two variables containing numeric tuples of equal length to generate
a scatter plot (see below).

Example:

X := [rad(-180) : rad(10) : rad(180)]

SinX := sin(X)

create_funct_1d_pairs (X, SinX, F)

The variables X and SinX store discrete input values for the sine function in the range [−π, π].These values are fed
into the operator create_funct_1d_pairs to create the function variable Fwith the semantic type function_1d.

6.22.7 Inspecting Functions 171

Figure 6.90: Inspecting a variable of semantic type function_1d.

Plot area

Plot list

x-axis

y-axis

Figure 6.91: Inspecting a tuple with y values for equidistant x values.

Double-click F in the variable window to generate a function plot (see figure 6.90).

Right-click SinX in the variable window and select Plot as Function to generate a function plot of the y values
(see figure 6.91). Note that the tuple index (0 .. 36) is used to set the x range. The plot style of numeric tuples
defaults to steps. This can be changed from the context menu of the plot list (see below).

Adjusting the Function Plot

The zoom level of the function plot can be adjusted with the mouse wheel over the plot area or one of the axes.
The displayed part can be panned by dragging the plot area or one of the axes, and adjusted by dragging the axis
limits. Additional display settings are available in the context menus (see below). You can add additional variables
to the current function plot window by clicking <Add Function> in the plot list.

Context Menu (x-axis)

Action Shortcut Description
Reset Bounds

�� ��w or
�� ��Ctrl+Shift+W Set width to default.

G
U

IR
ef

er
en

ce

172 Graphical User Interface

Action Shortcut Description
Set 1:1 Aspect

Ratio

Set x range to same scale as y range.

Linear Scale Set x-axis to linear scale.
Logarithmic

Scale

Set x-axis to logarithmic scale.

User-defined

Range

Freeze x range.

Increasing Range Let x range grow on demand.
Adaptive Range Let x range grow or shrink on demand.

Context Menu (y-axis)

Action Shortcut Description
Reset Bounds

�� ��h or
�� ��Ctrl+Shift+H Set height to default.

Set 1:1 Aspect

Ratio

Set y range to same scale as x range.

Linear Scale Set y-axis to linear scale.
Logarithmic

Scale

Set y-axis to logarithmic scale.

User-defined

Range

Freeze y range.

Increasing Range Let y range grow on demand.
Adaptive Range Let y range grow or shrink on demand.

6.22.7 Inspecting Functions 173

Context Menu (plot area)

Action Shortcut Description
Reset Bounds

�� ��r or
�� ��Ctrl+Shift+R Reset width and height to default.

Zoom In Mode
�� ��+ or

�� ��Ctrl+Shift++ Zoom in (both axes).
Zoom Out Mode

�� ��- or
�� ��Ctrl+Shift+- Zoom out (both axes).

Enter Bounds...
�� ��b or

�� ��Ctrl+Shift+B Enter vertical and horizontal bounds para-
metrically.

Show Mouse

Position

�� ��p or
�� ��Ctrl+Shift+P Visualize the mouse position with a cross

hair.
Show Function

Value At X

�� ��x or
�� ��Ctrl+Shift+X Display the function value at horizontal

mouse position.
Show Function

Value At Y

�� ��y or
�� ��Ctrl+Shift+Y Display the function value at vertical

mouse position.
Show Background

Grid

�� ��g or
�� ��Ctrl+Shift+G Display grid lines in the background of the

plot area.
Insert Plot Code

for Graphics

Window

�� ��Ctrl+Shift+V Generate code to plot the current view in a
graphics window.

Context Menu (plot list)

Action Shortcut Description
Color Set the plot color of the corresponding

variable.
Thickness Set the plot thickness of the corresponding

variable.
Style Set the plot style of the corresponding vari-

able (see below).
Inspect as Tuple Display the values of the corresponding

variable.
Fit Graph Adjust bounds to view all values of the cor-

responding variable.
Remove Remove the corresponding variable from

the function plot.

Scatter Plot

A scatter plot plots values of one variable against values of another. Both variables must have the same length.
There are two ways to generate a scatter plot:

• Select two variables containing numeric tuples of equal length in the variable window using
�� ��Ctrl . Select

Plot as X/Y pair(s) from the context menu. The first variable in the current sorting order is used as the
x variable.

• Select the first variable in the variable window. Select Plot as Function from the context menu. In the
plot list of the function plot add the other variable. Open the context menu of the variable containing the y
values, select Plot against X values, and select the other variable.

The context menu of the plot list contains additional entries for the variables used for a scatter plot:

Action Shortcut Description
Swap (X, Y) Swap the variables used for the scatter plot.
Ungroup Ungroup the variables used for the scatter

plot and plot each on its own.

As an illustration we add the following assignment to the above code lines, and select the variables SinX (sine
function) and CosX (cosine function) to generate the scatter plot from figure 6.92.

G
U

IR
ef

er
en

ce

174 Graphical User Interface

Figure 6.92: Example for a scatter plot using the variables SinX and CosX.

Bars Steps

Lines Lines and DotsDots

Figure 6.93: Plot styles.

CosX := cos(X)

Note that the aspect ratio of the plot is chosen to match the window size. To get a correct aspect ratio (in this case:
a round plot), select Set 1:1 Aspect Ratio from the context menu of either the x- or the y-axis.

Plot Style

The available plot styles are illustrated in figure 6.93.

The first two styles (bars and steps) are only available for plots of numeric tuples against their index. The other
styles (lines, dots, lines and dots) are available for all function plots.

6.22.8 Inspecting 3D Object Models 175

6.22.8 Inspecting 3D Object Models

See also: disp_object_model_3d.

3D object models are referenced by control variable handles with the semantic type object_model_3d. Double-
clicking such handles opens a special inspection window that shows the parametric properties of the contained 3D
object model(s).

As an example, the following line of code loads one of the supplied 3D object models from disk and stores it in
ObjectModel3D:

read_object_model_3d ('bmc_mini', 'mm', [], [], ObjectModel3D, Status)

After executing this line, double-clicking the control variable ObjectModel3D opens the inspection window from
figure 6.94. See get_object_model_3d_params for a description of the displayed properties.

Figure 6.94: Parametric inspection of a 3D object model.

To visualize a specific 3D object model or all 3D object models (in case the handle contains multiple models),
select the checkbox of the corresponding model ID or the checkbox next to Display Models, respectively. The
selected models are then visualized in a special visualization window shown in figure 6.95.

The slots Color and Color Normals of the parametric inspection window define the color of the displayed
model(s) or the optionally displayed normals, respectively. These colors can be changed by double-clicking the

Figure 6.95: Visual inspection of a 3D object model.

G
U

IR
ef

er
en

ce

176 Graphical User Interface

corresponding slot and selecting a color name from the drop-down list. You can also enter a valid color name (page
321) or an arbitrary hex triplet into the color slots.

The 3D object model visualization window supports the following interactions:

drag inside circle rotate around X/Y axis
drag outside circle rotate around Z axis
mouse wheel zoom in and out�� ��Shift +drag zoom in and out�� ��Ctrl +drag pan 3D object model(s)

Attributes: Select the display mode of the 3D object model(s). Possible values are: auto (chooses the most
appropriate mode), faces, primitive, points, and line.

Alpha: Set the translucency of the displayed 3D object model(s). The alpha value ranges from 0 (full trans-
parency) to 1 (opaque).

The tool bar buttons control the way the 3D object models are displayed:

Reset to start pose of the displayed 3D object model(s).

Rotate around the center of the 3D object model(s).

Rotate around the selected surface point of the 3D object model(s).

Display coordinate system of 3D object model(s).

Show ID(s) of 3D object model(s) (useful if multiple models are displayed).

Show the normals of the 3D object model(s).

Display the polygons of the 3D object model(s) (if applicable).

Generate code lines that will display the current view in the graphics window.

Display a short usage information in the status bar.

6.23 Zoom Window

See also: Menu Visualization . Zoom Window.

The zoom window enables the interactive inspection of image details. You can open up any number of zoom
windows with different zoom levels (see Menu Visualization . New Zoom Window). The window also displays
the gray values of each image channel at the mouse cursor position. Apart from this, the pixel type, the number of
channels, and the current position of the mouse cursor are displayed. The percental scale can be selected from the
combo box. It is related to the original size of the image.

There are multiple methods to navigate the zoom window:

Check Follow Mouse and move the mouse pointer over the image to select the zoomed area. Click once to keep
the currently displayed area in the zoom window, when the mouse cursor moves out of the image window. Or,
uncheck Follow Mouse and click (or drag) inside the image to select the zoomed area. The red square in the
center of the zoom window indicates the position of the mouse cursor. The corresponding coordinates are also
displayed at the bottom of the window.

You can select a particular pixel by clicking it. The zooming tool stores this position internally, and will redisplay
the thus selected part of the image object when you leave the graphics window. This enables you to have a
meaningful display in the zooming tool whenever you want to do actions outside of the graphics window.

For finer control of the zoomed area, click inside the zoom window to give it the focus and use the cursor keys to
move pixel-wise. Press and hold the

�� ��Alt key and use the cursor keys to move ten pixels at a time. Click inside the
zoom window to move relative to the center position. For example, clicking ten pixels above the center will move
the view up ten pixels.

6.23 Zoom Window 177

Figure 6.96: Zoom.

The lower part of the window contains a gauge to display the gray value of the center pixel graphically. The range
goes from 0 (left) to 255 (right). Normally, the gray value of the first channel is displayed with a black bar. For
images with multiple channels the gauge is split accordingly to show individual bars for each channel. Thus, for
color images in RGB-space (three channels with red, green, and blue values) three colored bars are used. If the
gray value is below 1, the gauge is light gray (background). If the value is above 255, the gauge is dark gray or
colored for RGB images.

Above the gauge, the gray values are displayed as numbers. Up to five channels are displayed. If more than five
channels are present, the remaining channel values are truncated.

Next to the gauge, the coordinates of the mouse position are displayed. Below these, the image size, pixel type,
and the number of channels are shown.

The button next to the scale combo box enlarges the zoom window so that partially visible pixels at the border
become fully visible.

G
U

IR
ef

er
en

ce

178 Graphical User Interface

HDevelop Assistants 179

Chapter 7

HDevelop Assistants

HDevelop contains assistants for specific machine vision tasks. Each assistant provides a user interface tailored to
the requirements of its task. Using this interface, you can interactively set up and configure the assistant to solve a
specific machine vision problem. When the configuration is working satisfactorily, the assistant can be instructed
to generate HDevelop code into the current program. You can also save an assistant’s configuration for later use.

Common Features of all HDevelop Assistants

Because multiple assistants can be opened at the same time, assistants of the same type are numbered consecu-
tively, for example, if you open two image acquisition assistants, they are labeled “Image Acquisition 01” and
“Image Acquisition 02”, respectively. When you open a new assistant, a menu entry is added to the top of the
menu Assistants, from which the corresponding assistant can be restored if it has been closed. The current setup
is lost and the menu entry disappears if the associated assistant is exited explicitly. If you want to keep the setup
for later sessions, save it to a file.

Different assistants have different menus, usually corresponding to the available tab cards. These menus provide
functionality specific to the assistant’s task. There are also some menu entries that are available in every assistant.

File . Load Assistant Settings... Using this entry, a previous configuration can be loaded from a file
which has been generated using the menu entry Save Current Assistant Settings....

File . Save Current Assistant Settings... You can save the configuration of an assistant to a file for
later use. The default extension for these configuration files is .das.

File . Close Dialog The assistant is closed, but the current configuration is preserved. This menu entry per-
forms the same function as the assistant’s close button. You can restore a closed assistant by clicking the
numbered entry in the menu Assistants which is generated when a new assistant is opened.

File . Exit Assistant The assistant is quit. The resources used by the assistant are released. The link to the
generated code is lost. It is not possible to restore the assistant unless the setup has been saved to a file. The
menu entry in the menu Assistants is also removed.

Code Generation . Insert Code for Selection Insert HDevelop code based on the current settings of the
assistant. The code is inserted at the IC. As long as the associated assistant is not quit, you can change the
settings and update the code accordingly.

Code Generation . Release Generated Code Lines The link to the generated code is cut off. The code
remains in the program, but can no longer be updated or removed from the (formerly) associated assistant.
Nevertheless, you can generate new code with the current settings of the assistant.

Code Generation . Delete Generated Code Lines The generated code is deleted from the program. Please
note that any manual changes to the generated lines are deleted as well.

Code Generation . Show Code Preview Generate a preview of the code based on the current setup of the
assistant. If the program already contains generated code which is linked to the current assistant, the changed
code lines can be compared side-by-side in the preview.

A
ss

is
ta

nt
s

180 HDevelop Assistants

7.1 Image Acquisition Assistant

The image acquisition assistant is an easy-to-use front-end to the various image acquisition methods supported by
HALCON. Firstly, it lets you read images from the file system, for example, selected files or whole directories.
More importantly, it supports acquiring images from image acquisition devices that are supported by HALCON’s
image acquisition interfaces. When an image acquisition interface is selected, the corresponding device parameters,
for example, the image format can be set. After establishing a connection to the selected interface, images can be
grabbed and displayed in the active graphics window. Using live images, the parameters supported by the selected
interface can be explored interactively.

When a suitable setup is achieved, the settings of the assistant can be saved for later reuse. The assistant can also be
instructed to generate HDevelop code that will connect to the selected image acquisition interface, set the specified
parameters and grab images.

7.1.1 Tab Source

Image File(s)

Activate this radio button to load images from files. You can enter the names of image files in the text field.
Multiple file names are separated by a semicolon “;”. If an image with no path name or a relative path name
is given, the image files are searched in the directories specified by the environment variables HALCONROOT and
HALCONIMAGES.

You can also enter the full path of an image directory to specify all images of the given directory. If the check box
Recursive is ticked, the images of all subdirectories are specified as well.

Pressing
�� ��Return will display the first of the specified images in the active graphics window.

The buttons Select File(s) ... and Select Directory ... open a file browser to select multiple images
or an image directory, respectively. After clicking OK in the file browser, the text field is updated with the selected
items, and the first image is displayed in the active graphics window.

Use the entry Snap or Live in the menu Acquisition, or the corresponding tool bar buttons to view the selected
images one after another.

Image Acquisition Interface

Activate this radio button to acquire images from an image acquisition interface. The drop-down list contains the
list of all supported image acquisition interfaces.

Clicking Auto-detect Interfaces probes the image acquisition interfaces in turn, and removes those interfaces
from the list that do not respond. It is recommended to save your program before probing the image acquisition
interfaces.

7.1.2 Tab Connection

This tab card is only available if the image source is set to an image acquisition interface. The connection pa-
rameters are described below. See the description of the operator open_framegrabber for additional information
about the fields.

Configuration

Device Select the ID of a board, camera, or logical device if multiple devices are available for the selected image
acquisition interface.

Upon building the list of devices, the assistant queries the status of each device. Depending on the image
acquisition interface, devices may be reported as misconfigured. If you select such a device, the assistant may
suggest a Generic parameter that potentially resolves the misconfiguration. If you confirm this suggestion,
the parameter will be entered into the Generic slot (see below). If a device is labeled with a question mark
icon, it is either read-only, busy, or unknown.

Port Specify the ID of the input port.

7.1.3 Tab Parameters 181

Camera Type Select a camera configuration or signal type.

Select... Select a camera configuration file (in XML format) from a file browser.

Trigger Tick the check box if the image acquisition is controlled by an external trigger.

Resolution (X / Y) Specify the factor for image width / height.

Color Space Specify the configuration for color acquisition.

Field Specify the frame selection for interlaced cameras.

Bit Depth Specify the number of bits used for one image channel.

Generic Some image acquisition interfaces support device-specific parameters to preset selected values before
the camera is initialized. The parameters the interface claims to support are suggested as a drop-down list.
To set a generic parameter, select it from the list, and edit the assigned value, that is, the value after the =.
Multiple generic parameters may be set by separating the entries with a comma.

If the selected image acquisition interface does not support generic parameters, this field is grayed out.

See the documentation of the individual image acquisition interfaces for more information about the sup-
ported generic parameters.

Action Buttons

When the connection parameters are set up, the action buttons are used to connect to and acquire images from
the specified device. Messages about connection errors are displayed in the status line of the image acquisition
assistant window.

Connect Connect to the specified image acquisition device. If the connection fails, carefully check the configura-
tion in the above fields. Not all combinations of settings are allowed for all devices. It is recommended that
you enable low level error messages (see General Options . Experienced User) to find out what is go-
ing wrong. Please note that an established connection is closed automatically, if the connection parameters
are modified.

When the connection is established, this button can be used to disconnect the device.

Snap Acquire a single image from the device (first connecting to the device if needed). The image is displayed in
the active graphics window unless Display Image is set to Disabled (see Inspect).

Live Start/stop live image acquisition mode. The images are displayed in the active graphics window unless
Display Image is set to Disabled (see Inspect).

Detect Clicking this button will attempt to redetect valid parameters for the current device.

Reset All Reset all connection parameters to their default values.

7.1.3 Tab Parameters

This tab card is available if the image source is set to an image acquisition interface and a connection to an image
acquisition device has already been established. Press

�� ��F1 for more information about the displayed parameters.

Interface Library The image acquisition interface library (DLL or shared object) used by the current connec-
tion is displayed in this field.

Update Image If this check box is ticked, a new image is acquired immediately after each parameter change.
Disable the check box if you want to change multiple parameters at once.

Refresh Refreshes the list of supported parameters and their value ranges. This is useful for parameters with side
affects.

Reset All Resets all parameters to their default values. Individual parameters can be reset by clicking the corre-
sponding button displayed to the right of each parameter.

A
ss

is
ta

nt
s

182 HDevelop Assistants

Parameter Grouping

The available parameters are grouped by user parameters, read-only parameters, action parameters and write-only
parameters. The latter cannot be changed in the assistant and are listed only for reference. The parameters of
some of the interfaces are additionally grouped by category and visibility. If grouping information is available, the
amount of displayed parameters can be reduced by choosing a subject matter from the down-down list Category.
You can further filter the parameters by selecting a skill level from the down-down list Visibility (beginner,
expert, or guru).

By default the parameters are sorted thematically. You can also sort the parameters by name (check box Sort by

Name).

Setting Parameters

The parameters are displayed in a tabular format. The first column shows the parameter name. The second column
depends on the parameter type:

• If the parameter is editable, its value can be entered into a text field. This field may contain value suggestions
as a drop-down list. Numeric values can be incremented/decremented using the arrows next to the text field.

• If the parameter is read-only, its value is displayed, but cannot be modified.

• For action parameters, the corresponding action can be triggered by clicking the Apply button.

The third column is reserved for numeric parameters. It contains a slider to quickly alter the parameter value within
the defined range. Please note that low level error messages are suppressed while dragging the slider. If no range
is defined, no slider is displayed.

The fourth column contains a reset button for editable parameters. Click it to reset altered parameters to their
default value.

7.1.4 Tab Inspect

Display

Display Image It is recommended to set the display mode to Normal unless you wish to make speed measure-
ments. Other modes are Volatile (volatile grabbing), and Disabled (grabbing images without displaying
them).

Output Window Specifies the graphics window for the image display (either the active graphics windows, or a
window ID from the list).

Statistics

This area displays statistics for the acquisition time and the frame rate of all acquired images.

Ignore first image of live acquisition When the first image is acquired in live mode, a certain amount
of overhead is added. Therefore, it is recommended to check box to increase the accuracy of the results.

Status Bar

Show frames per second during live acquisition Usually, the number of grabbed images and the ac-
quisition time of the last image are displayed in the status bar of the window. Ticking this check box causes
the frame rate (frames per second) to be displayed in live mode.

Show Min/Mean/Max If selected, the image acquisition statistics are also displayed in the status bar of the win-
dow. This way, you can watch the acquisition statistics in any tab card of the assistant.

7.1.5 Tab Code Generation

The settings made in the tab cards Source, Connection, and Parameters can be distilled to program lines
that perform the desired image acquisition in your current program. The fields in this tab card specify the code
generation details. You can preview the code lines in the panel Code Preview. This panel can be toggled between
hidden and displayed state by clicking the button next to the panel label.

7.1.6 Menu Bar 183

Acquisition

The settings of this section are available if images are acquired from an image acquisition interface.

Control Flow: The initialization code for the selected image acquisition interface is always generated (setting
Initialize Only). It opens a connection to the specified image acquisition device, and sets all changed parame-
ters. You can also generate code to acquire a single image (setting Acquire Single Image), or to acquire images
in a loop (setting Acquire Images in Loop).

Acquisition Mode: You can switch between synchronous and asynchronous acquisition. The latter runs in the
background and is recommended for continuous acquisition.

Variable Names

This section defines the variable names that are used in the generated code.

Connection Handle: Variable storing the acquisition handle. The image acquisition interface is accessed by this
name. Set to AcqHandle in the example below.

Image Object: Variable used for the acquired images. Set to Image in the example below.

The following variables have to be specified if Source is set to Image File(s) and multiple files are specified:

Loop Counter: Variable storing the loop index.

Image Files: Variable for storing the image names as a tuple.

Generate the Code

Insert Code: The actual code is inserted at the IC.

Example Code

* Code generated by Image Acquisition 01

open_framegrabber ('GigEVision', 1, 1, 0, 0, 0, 0, 'progressive', 8, 'gray', \

-1, 'false', 'default', '003053095003_Basler_scA160014gc', \

0, -1, AcqHandle)

grab_image_start (AcqHandle, -1)

while (true)

grab_image_async (Image, AcqHandle, -1)

* Do something

endwhile

close_framegrabber (AcqHandle)

7.1.6 Menu Bar

Menus File, Code Generation, Help

For the description of the corresponding menu entries see section 7 on page 179.

Menu Acquisition

Connect Connect / disconnect the selected image acquisition device. See section 7.1.2 on page 180.

Snap Acquire a single image. See section 7.1.2 on page 180.

Live Acquire images in live mode. See section 7.1.2 on page 180.

A
ss

is
ta

nt
s

184 HDevelop Assistants

7.2 Calibration Assistant

7.2.1 Introducing the Calibration Assistant of HDevelop

Most applications that need a previous calibration of the camera system belong to the area of 3D machine vision.
These applications require a 3D model of the camera system. Calibration is necessary to gain information about
distortions (perspective and lens distortions) in an image and about parameters of the camera system. Calibrating
your camera system with the HALCON Calibration Assistant enables you to measure in the world coordinate
system with a high accuracy. This task can be performed by taking images of a known object, a calibration plate.

The Calibration Assistant of HDevelop is a front-end to HALCON’s operator camera_calibration. Using the
Calibration Assistant you can

• either perform a complete calibration or

• take advantage of the user-defined mode and only calibrate chosen parameters, if the rest is already known
(for example, if you are using a special setting).

All you need is a set of suitable calibration images (the number and requirements depend on the used calibration
plate, please see the reference manual chapter “Calibration”). The Calibration Assistant then returns the calibration
results and enables you to generate code and insert it into a given program.

The Calibration Assistant can calibrate vision systems based on standard lenses as well as on telecentric lenses.

With the HALCON Calibration Assistant you can

• perform a calibration,

• view the calibration results (page 195),

• generate code (page 196) for the calibration or for using the calibration results and insert it into a program
for further use in a subsequent application.

A reference to the elements of the Calibration Assistant can be found in the Calibration Assistant Reference (page
198).

For further information about camera calibration, please refer to the reference manual chapter “Calibration” or the
corresponding chapter in the solution guide on 3D Vision.

ATTENTION: Keep your camera setup (aperture, focus, pose) fixed when you have chosen it! This applies
to the calibration process itself as well as to the subsequent application. Any changes will result in the failure
of the calibration or, even worse, in wrong output values.

In this guide, the following special terms are used:

Calibration By calibrating (page 188) a vision system, you extract information about it, for example, its focal
length or its position and orientation relative to the “world”. However, even with such information you
cannot fully reconstruct the 3D world from a single image. For example, you can determine the (3D) size
of an object only if you know its distance from the vision system (when using a standard lens). Calibration
is a preparation for all subsequent image processing applications. The Calibration Assistant needs to grab a
set of images of a special calibration object placed in front of your vision system. You can choose between
a Full Calibration and a User-Defined Calibration, where known parameters are not calibrated again.

Calibration Plate This is an object whose shape is known precisely. Two different types of standard HALCON
calibration plates are available: Calibration plates with hexagonally arranged marks and calibration plates
with rectangularly arranged marks. Transparent calibration plates are available for applications requiring
backlight illumination. Additionally, the calibration plates are available in different sizes. Which calibration
plate is suited best depends on your machine vision task: As a rule of thumb, if you grab an image of the plane
of measurement, calibration plates with hexagonally arranged marks should fill the whole image and calibra-
tion plates with rectangularly arranged marks should fill a fourth of the image. The bigger calibration plates
(160mm and 320 mm for calibration plates with hexagonally arranged marks and 100mm and 200mm for
calibration plates with rectangularly arranged marks, made from aluminum) come together with a file con-
taining their exact measurements (calplate_160mm.cpd, calplate_320mm.cpd, caltab_100mm.descr,
and caltab_200mm.descr). Please copy this file to the subdirectory calib of the HALCON base directory

7.2.2 How to Calibrate With the Calibration Assistant 185

you chose during the installation. This is not necessary for smaller (ceramics) calibration plates as they can
be manufactured very precisely and can therefore use standard description files (.cpd files for calibration
plates with hexagonally arranged marks and .descr files for calibration plates with rectangularly arranged
marks). If you use your own calibration plate, you have to create the description file yourself and copy it
into the subdirectory calib.

Calibration Plate Extraction Parameters These parameters (page 194) influence the extraction of the calibra-
tion plate. You may change them to improve the extraction of the plate if necessary. We recommend,
however, that you try to improve your image quality first.

Camera Parameters Internal Camera Parameters describe the camera itself, for example, its Focal Length,
Cell Width and Cell Height. These parameters are part of the calibration results, initial values for some
of them are also needed for the setup of the calibration.

Camera Pose The position and orientation of the world coordinate system relative to the camera are called the
external Camera Parameters. They are part of the calibration results.

Display Parameters On the Calibration (page 188) tab, you can choose the display parameters, like colors, as
you prefer them. See also Display Parameters (page 194).

Full Calibration In a Full Calibration, the complete camera system is calibrated. The only information
needed are approximate values for Camera Type, Cell Width, Cell Height and Focal Length as well
as the question whether you are using a Telecentric camera (in which case the Focal Length is not
required).

Image Rectification Based on the calibration results, you can remove image distortions. This is called image
rectification. Example code is available from the Code Generation tab (page 196).

Pose Estimation When the interior parameters are calibrated, it is possible to estimate the camera pose from a
single image. Example code is available from the Code Generation tab (page 196).

Reference Image This image locates the world coordinate system, which then has its origin at the origin of the
calibration plate in the reference image. The origin of the calibration plate is the center of the central
mark of the first finder pattern for calibration plates with hexagonally arranged marks and the middle of the
calibration plate for calibration plates with rectangularly arranged marks. By default, the first calibration
image is used as the reference image. However, you can choose any other image of the calibration sequence.

Standard Lenses A standard lens is similar to the one in the human eye: It performs a perspective projection;
hence, objects become smaller in the image the further they are away.

Telecentric Lenses Telecentric lenses perform a parallel projection. Therefore, objects have the same size in the
image independent of their distance to a camera. This means that they can lie in different planes; only the
orientation of the planes relative to the camera must be identical.

User-Defined Calibration The setup step Calibration Task provides a User-Defined Calibration, which
enables you to perform calibrations with special setups or re-use parameters from previous calibrations.

World Coordinates Measurements and XLD contours can, after finishing the calibration, be transformed into
(3D) world coordinates, meaning the coordinates of the world (for example, in millimeters), as opposed to
those of an image (in pixels). Example code is available from the Code Generation tab under Sample
Usage (page 197).

Quality Issues A high quality of the calibration images is essential not only for the calibration itself but for the
quality of the calibration results. Examples for bad image quality are overexposure of the calibration plate,
bad mark contrast or very small mark size. These quality issues are listed under Quality Issues (page
191) on the Calibration tab. Sorting out images with too many defects improves the calibration results.

7.2.2 How to Calibrate With the Calibration Assistant

7.2.2.1 Choosing the Correct Calibration Mode and Basic Parameters

For the calibration setup in the Setup tab, the basic information has to be filled in. Which information is necessary
for your application will depend on the answer to the question whether you want to perform a full calibration,
whether you have a special setup or you have calibrated before and therefore want to take advantage of the user-
defined calibration. Furthermore, information about the calibration plate and the camera is required.

A
ss

is
ta

nt
s

186 HDevelop Assistants

Choosing the Task for Your Application If you want to calibrate all parameters, for example, if you are cal-
ibrating for the first time with your setup, click the radio button Full Calibration: Pose and all

Camera Parameters.

If you are using a special setting or you have already calibrated your system before and want to re-use your
resulting parameters, choose User-defined: Select Individual Parameters for Calibration.

After having decided on your calibration task, proceed with the details about your Calibration Plate.

Calibration Plate Parameters First, choose the description file for your calibration plate and the calibration plate
Thickness (in mm). The name of the description file indicates the size of the plate and the file extension
indicates the type of the calibration plate. In particular, the file ending .cpd is used for calibration plates with
hexagonally arranged marks and the file extension .descr is used for calibration plates with rectangularly
arranged marks. Note that calibration plates with hexagonally arranged marks usually have light marks on a
dark background. Nevertheless, also calibration plates with dark marks on a light background are available.
Then, you have to choose a description file with the filename ending "_dark_on_light". Calibration plates
with rectangularly arranged marks always have dark marks on a light background. With the parameter
Thickness, you can modify the position of the world coordinate system and the measurement plane, which
is located beneath the calibration plate surface by the value of Thickness in the Reference Image (page
190).

Then proceed to set the Camera Parameters.

Set Camera Parameters For setting up the camera parameters

• first choose the Camera Model,

• then set the parameters for a full calibration or

• set the parameters for a user-defined calibration (page 188).

It is also possible to import parameters from a file. If you should decide to do this, just click the Import

Parameters button.

When you have finished this last part of the Setup tab, proceed to the Calibration (page 188) tab.

Choose your Camera Model First, choose the Camera Model you are using:

• either Area Scan (Division),

• Area Scan (Polynomial)

• or Line Scan

Even though the camera model Area Scan (Division) typically returns good results for your application,
you can improve the accuracy and lower the error rate by using the Area Scan (Polynomial) camera
model. We therefore recommend for you to use the Area Scan (Polynomial) model if the Mean Error

on the Results (page 195) tab under Calibration Status (page 195) is too high. If you decide for the
Area Scan (Polynomial) model, it is especially important that you thoroughly cover the field of view
with calibration plate images and do not leave out the edges.

Note, that a higher Mean Error might be caused by inappropriate calibration images.

For area scan cameras, the following additional options may be specified:

If your camera has a tilt lens, tick the checkbox Tilt.

Then, the Projection Model must be specified (either Projective or Telecentric).

Telecentric tilt lens cameras are available in different variations, which must be specified in Projection

Model:

• Bilateral Telecentric

• Object Side Telecentric

• Image Side Telecentric

Set Parameters for Full Calibration If you choose a full calibration for an area scan camera, you must specify
approximate values for the camera parameters. These parameters depend on the camera type and are listed
in the following tables. Please have a look at the data sheet of your camera for suitable values. Information
about the focal length can be found on the lens itself.

7.2.2 How to Calibrate With the Calibration Assistant 187

Parameters for projective area scan cameras:
Parameter no tilt with tilt
Cell width X X
Cell height X X
Focal length X X
Image plane distance X
Tilt angle X
Rotation angle X

Parameters for telecentric area scan cameras:
Parameter no tilt bilateral object side image side
Cell width X X X X
Cell height X X X X
Magnification X X X
Focal length X
Image plane distance X
Tilt angle X X X
Rotation angle X X X

Parameters for line scan cameras:
Parameter
Cell width X
Cell height X
Focal length X
Motion X X
Motion Y X
Motion Z X

A
ss

is
ta

nt
s

188 HDevelop Assistants

Set Parameters for User-Defined Calibration In the user-defined mode for the area scan camera

(division), you can also choose Center Column (Cx), Center Row (Cy) and Kappa. The
area scan camera (polynomial) model allows you to also choose the lens distortion parameters for
radial distortion Radial 2nd Order (K1), Radial 4th Order (K2), Radial 6th Order (K3) and
the two parameters for tangential distortion Tangential 2nd Order (P1) and Tangential 2nd Order

(P2).

If you want to change the parameters Cell Width and Cell Height independently from each other, click
the chain button.

7.2.2.2 Acquiring Calibration Images

The main part of the calibration process consists of acquiring images of the calibration plate in different positions
and orientations relative to the vision system. Please note that the more you vary the position and orientation, the
better the calibration results will be. Good calibration images will improve your calibration results significantly.
Detailed instructions on how to take calibration images can be found in the section “How to take a set of suitable
images?” in the reference manual chapter “Calibration”.

Obligatory steps for calibration are

• acquiring calibration plate images,

• choosing your image source,

• and calibrating (page 190).

Optional parameters, which may be changed, are

• parameters concerning Quality Issues (page 191),

• Display Parameters (page 194), and

• Calibration Plate Extraction Parameters (page 194)

ATTENTION: Keep your camera setup (aperture, focus, pose) fixed when you have chosen it! This applies
to the calibration process itself as well as to the subsequent application. Any changes will result in the failure
of the calibration or, even worse, in wrong output values.

When the calibration images are available, you can push the Calibrate button and move on to the Results (page
195) tab.

Acquiring Images for a Successful Calibration
Note that the calibration assistant currently supports 8-bit and 16-bit (“byte” and “uint2”) images.

In order to achieve an accurate calibration result you should pay special attention to the acquisition of your
calibration images. Therefore, see the section “How to take a set of suitable images?” in the reference
manual chapter “Calibration”, which gives guidance on the acquisition process.

See figure 7.1 for an exemplary setup with the resulting calibration images shown in figure 7.2.

Choosing an Image Source
The images for the calibration can either be loaded from a file or acquired directly using the Image Acquisi-
tion Assistant.

When loading images from a file, just click the radio button Image Files.

To acquire new images, click the radio button Image Acquisition Assistant (page 180). The assistant
will then appear in a new window and support you with acquiring new calibration images.

Note that the calibration works on a single channel. For color RGB images, the red channel will be used. A
color transformation can be performed with the operator trans_from_rgb.

Calibration Images
All images from files will be displayed with their path on the Calibration tab, whereas images acquired
using the Acquisition Assistant will be displayed with their consecutive numbers.The image status gives
information about the quality of each image. Details concerning quality can be found under Quality

7.2.2 How to Calibrate With the Calibration Assistant 189

a) b) c)

d) e) f)

Figure 7.1: Acquisition of suitable calibration images using a calibration plate with hexagonally arranged marks. The
plate is a) placed in the measurement plane, b) - e) tilted in different directions, and c) placed parallel
to the measurement plane (with a rotation around the z axis).

Figure 7.2: Example for suitable calibration images using a calibration plate with hexagonally arranged marks.

Issues (page 191).

If you use the Image Acquisition Assistant and want to see a live image, you can also activate Live Image

on the Calibration tab and click the Snap button whenever you want to keep an image for calibration.

If you Load... images from a file into the Calibration Assistant and then decide to acquire new images
with the Image Acquisition Assistant, you will be warned that the images from the file will be removed from
the window.
With the Remove and Remove All buttons on the left, you can remove either one or all images of the list.
The Save and Save All buttons will save one or all images of the list.
Click Update to control the time when camera parameters, segmentation parameters or quality adjustments
have to be transferred for the existing images.

A
ss

is
ta

nt
s

190 HDevelop Assistants

a) b)

Figure 7.3: Images of calibration plates with their coordinate systems: a) plate with hexagonally arranged marks
and b) plate with rectangularly arranged marks.

Activate Auto Update to automatically update to the latest adjustments. Quality Issues are updated with
a little delay after adapting Calibration Plate Extraction Parameters (page 194). Deactivating
Auto Update enables you to change several parameters at once and speeds up the processing of bigger data
sets.

Select a Reference Image With the pose of the calibration plate in the reference image, you specify the world
coordinate system and the measurement plane for subsequent 3D measurements (see figure 7.3). Thus, in
one calibration image (typically, the first one), you should place the calibration plate such that it lies on top
of the measurement plane.
If this is not possible, place the calibration plate in a position parallel to the measurement plane and “move”
the coordinate system by adapting the parameter Thickness.
The star on the left side of the Calibration window indicates the reference image. It is by default set on
the first image. You can, however, by clicking the Set Reference button, pick another image as reference.

Calibrating
Click the button Calibrate to finally perform the calibration task.
Check first whether you have enough images of sufficient quality. You can check the quality under Quality
Issues.
If necessary, you can also change Calibration Plate Extraction Parameters (page 194) before ac-
tually calibrating. In case your calibration fails and displays the error "Camera calibration did not

converge", check possible error sources in the Checklist for Calibration Errors or have a look at the rec-
ommendations listed in the reference manual chapter “Calibration”, section “How to take a set of suitable
images?”.

7.2.2 How to Calibrate With the Calibration Assistant 191

Possible Error Source Solution
Did any camera settings (like aperture, focus or
pose of the camera) change during the calibration
process?

Take new calibration images and do not change any
settings during calibration and later during the ap-
plication. If you decide to change anything you
have to start a new calibration.

Did you acquire the calibration images the way they
are required?

Make sure you followed the recommendations in
the section “How to take a set of suitable images?”
in the reference manual chapter “Calibration” re-
garding the placement of the calibration plate, the
setup of the cameras and the image properties.

Are you using an extreme wide angle lens? The distortions that appear close to the image bor-
ders cause a higher Mean Error or can even be
responsible for the failure of the calibration. You
must use another lens in this case.

Is the size of your camera chip compatible with the
lens?

Using a lens that is not compatible with your cam-
era chip size (this information should be included in
the instructions of the lens) will decrease the quality
of your image.

Table 7.1: Checklist for Calibration Errors.

Handling Quality Issues
Under Quality Issues you find an evaluation of each image, which includes descriptions of the defective
image features and a quality score percentage. A result of 0% indicates a very defective image feature
whereas 100% equals ideal quality. This can help to improve the calibration result by deleting images which
are not good enough and might lead to a higher error rate during the calibration process. If you need a
certain quality level you can set a Warn Level and the defects will be listed under Quality Issues. The
quality issues are detected by image tests and sequence tests. If you want the program to run faster or if
you do not need quality feedback, you can change Image Tests and Sequence Tests either to Quick,
which performs less tests, or None, which does not perform any tests at all. If the defects are too severe, for
example, if the calibration marks or even the calibration plate are not found, the Calibration button will
be grayed out, making it impossible to calibrate unless all images of such poor quality are deleted from the
list.

The test results referring to the calibration plate’s tilting may be ignored if later measurements are always
conducted in exactly the same plane. In this case, however, the values for the Focal Length and Z are not
correct each for itself but only in their combination. The reason for this is that neither of these values can be
determined for itself which leads to the result that if you get, for example, a Focal Length that is double
the value that it should be, Z will be half as high and vice versa. Besides, the further you place an object
above the plane in which you have performed the calibration, the less precise the result will be.

Note that poor image quality leads to poor calibration results and subsequently causes bad or wrong measur-
ing values. However, acceptable results are usually achieved even with quality score warnings in the range
of 40% to 70%. If necessary check the following tables for suggestions about improving your image quality.
When trying to improve your image quality, do not forget to check other error sources.

ATTENTION: If you change your camera setup (aperture, focus, pose) during the calibration process
or during the subsequent application, you have to restart your calibration with the new setup. Any
changes will result in the failure of the calibration or, even worse, in wrong output values.
Note: Due to special settings or unchangeable specifications of your work environment, it may be possible
that you cannot fully avoid any quality reductions. If you follow these instructions, you should, however, be
able to reach a feasible quality level to work with.

A
ss

is
ta

nt
s

192 HDevelop Assistants

Quality Issue Explanation Possible Solution
Plate is overexposed Parts of the calibration plate are

too bright, which leads to a shift-
ing of edges and therefore calcu-
lates a wrong center position.

Close the lens aperture or the
shutter a bit more or turn down
the brightness of your illumina-
tion until an adequate quality is
reached.

Illumination is inhomogeneous The image is illuminated inhomo-
geneously, that is the brightness
of the calibration plate changes
within one image. This condi-
tion makes it difficult to locate the
calibration plate and consequently
leads to a lower accuracy.

Inhomogeneity in an image is of-
ten the result of using lateral illu-
mination. If that is the case: Can
you change the setting and instead
use illumination from above? An-
other possibility would be to use
diffuse illumination.

Contrast is low The difference between the gray
values of the calibration plate and
the calibration marks is not big
enough.

Reasons can be either overexpo-
sure or underexposure. To im-
prove your results, change your
aperture or the brightness of your
illumination.

7.2.2 How to Calibrate With the Calibration Assistant 193

Quality Issue Explanation Possible Solution

Diameter of marks are too small The diameters of the found cali-
bration plate marks are too small.

To fix this issue, you should either
change your setup or use a calibra-
tion plate with larger marks.

Marks on plate are out of focus The marks are not completely
focused, some of them appear
blurry. This leads to a lower ro-
bustness.

The depth of field has to include
the whole object. To fix this error,
change either your focal length or
the distance of the object to the
camera. Alternatively you can
also make the aperture smaller and
use brighter illumination.

Quality assessment failed The image test failed, even though
the plate could be found in the im-
age.

For calibration plates with rect-
angularly arranged marks, check,
if any part of the image is oc-
cluded and if the occlusion inter-
rupts the black margin of the cali-
bration plate.

Mark extraction failed for some
images

It was impossible to extract the
calibration plate marks in some
images, which makes it also im-
possible to calibrate in this state.

Delete the images for which mark
extraction has failed and use new
images instead or adapt the extrac-
tion parameters. Make sure that
you follow the recommendations
in the section “How to take a set of
suitable images?” in the reference
manual chapter “Calibration”.

A
ss

is
ta

nt
s

194 HDevelop Assistants

Quality Issue Explanation Possible Solution

Quality issues detected for some
images

The quality of some images is be-
low the warn level.

Check the quality issues of the sin-
gle images by clicking their names
in the list. Handle quality issues as
described in the table above.

Number of images is too low The number of images is lower
than recommended.

Check if you have taken enough
images, depending on the type of
calibration plate you use.

Field of view is not covered by
plate images

Some part of the field of view is
not covered by any image of the
calibration plate, that is there are
areas with no marks.

Press the Show button, which
appears in a column named
Details, to see all areas in red
that are not covered by calibration
plate images (compare figure 7.4).
Before continuing, add the miss-
ing image(s) to your sequence.
You can avoid this problem by
following the recommendations in
the section “How to take a set of
suitable images?” in the reference
manual chapter “Calibration”.

Tilt angles are not covered by se-
quence

The calibration plate has not been
tilted enough.

Add more images of your calibra-
tion plate tilted in different direc-
tions. For calibration plates with
rectangularly arranged marks we
recommend tilting the plate in ev-
ery quadrant of the image twice
and vary the tilting direction.

Not all image sizes are identical The image list contains images of
different sizes.

You have changed your setup
while taking calibration images.
Therefore, you should delete those
images taken before the change to
get useful results back.

7.2.2.3 Display Parameters

In the drop-down menus under Display Parameters you can choose your own values for Plate Region, Mark
Centers or the Coordinate System. The Draw option lets you choose whether you want to see margins or filled
regions.

7.2.2.4 Calibration Plate Extraction Parameters

Some of the parameters under Calibration Plate Extraction Parameters may be changed to improve the
calibration results.

For calibration plates with hexagonally arranged marks:

• Smoothing (Sigma) should be set to a higher value if the image is blurry or contains strong noise.

For calibration plates with rectangularly arranged marks:

• Gap Tolerance should be set to a higher value if the plate is strongly tilted and

• Smoothing (Alpha) should be set to a smaller value if the image is blurry.

• Furthermore the Maximum Mark Diameter may be changed if the checkbox is activated.

7.2.3 Results of the Calibration 195

b)a)

c)

d)

not covered

covered

Figure 7.4: Output when not enough calibration images have been taken. .

a) and b): Calibration sequence consisting of two calibration plate images

c) Show button appears due to the fact that the coverage is not sufficient

d) Image shows which parts of the field of view are not covered by calibration plate images

For more information about these parameters, please refer to the reference manual entry of the HALCON operator
find_calib_object.

7.2.3 Results of the Calibration

Two types of parameters of your vision system are calculated as results: internal parameters, for example, the
precise focal length, the size of the camera chip, or the distortion caused by an imperfect lens, and external
parameters, for example, the position and orientation of the vision system.

• Calibration Status,

• Camera Parameters, and

• the Camera Pose.

The results displayed in Camera Parameters and Camera Pose can also be saved to a file by clicking the Save
buttons on the right.

Display Results enables you to choose which results should be displayed.

When you are finished with the results, go on to the Code Generation (page 199) tab.

7.2.3.1 Calibration Status

This box displays whether the calibration was successful, and the Mean Error in pixels.

If you either delete calibration images (page 188), change Calibration Plate Extraction Parameters

(page 194) or Camera Parameters (page 186) after having calibrated, the former calibration data is not valid
any more. Therefore, the Status will display that no calibration data is available. To continue working with
your changed camera parameters, calibration parameters or images, just click Calibrate (page 190) again on the
Calibration tab.

A
ss

is
ta

nt
s

196 HDevelop Assistants

Mean Error Designates the average error in pixels during the calibration process. When the system has been
calibrated, the ideal centers of the calibration marks are calculated and compared to the real mark centers.
Mean Error is the deviation value between the ideal and the real mark centers. A value of 0.1 and lower
can be regarded as a good result. Possible calibration errors are described in the tables about quality issues
under Quality Issues (page 191).

7.2.3.2 Camera Parameters

The internal camera parameters include Cell Width (Sx) and Cell Height (Sy) in µm, Focal Length in
mm, Center Column (Cx) and Center Row (Cy), Image Width and Image Height in pixels. They also
include Kappa in m−2 or instead of Kappa, the distortion parameters Radial 2nd Order (K1) in m−2, Radial
4th Order (K2) in m−4, Radial 6th Order in m−6, Tangential 2nd Order (P1) and Tangential 2nd

Order (P2) in m−2 for the polynomial area scan camera model.

If you have a line scan camera, additionally to the values of the area scan camera (division) model, values
for the motion parameters Motion x (Vx), Motion y (Vy) and Motion z (Vz) in µ/pixel will be returned.

7.2.3.3 Camera Pose

The 3D pose of the world coordinate system relative to the camera is described by the external camera parameters
X, Y and Z in mm and Rotation X, Rotation Y and Rotation Z in degrees.

7.2.3.4 Display Results

You can choose Original Reference Image to see the previously chosen reference image and Simulated

Reference Image to display a synthetic reference image, which has been calculated using the internally known
measures of the calibration plate and the pose of the plate in the reference image, using the radio buttons. You can
also decide whether you want to Display Coordinate Axes of the coordinate system of the calibration plate.

7.2.4 Generating Code

This tab helps you to generate and insert code for calibrating and for using the calibration results in your HDevelop
program. The tab is subdivided into four parts:

• Calibration

• Sample Usage

• Variable Names (page 198)

• Code Preview (page 198)

When you are finished with configuring the options, check the position of the insert cursor and click Insert Code

(page 199) under Calibration or Sample Usage to insert the code.
If you have already inserted code into your program and you click insert code again, the previous code will be!
replaced regardless of the cursor position.

7.2.4.1 Calibration

Choose your Generation Mode, either

• Calibration Procedure which exports the generated code,

• Calibration Data (Tuple) which exports the resulting calibration parameters (CameraParameters and
CameraPose) as tuples,

• or Calibration Data (File) which writes the calibration results into the specified files and generates
code lines for reading those files.

7.2.4 Generating Code 197

For the last one you can click the directory icons to browse for a stored file. Subsequently select Parameter File

and Pose File.

In order to save the calibration results to files it is necessary that

• a successful calibration took place before and

• a file name exists for both files.

To generate code for initializing the image acquisition when using the Image Acquisition Assistant (page
180), enable Initialize Acquisition.

When you are finished, check the position of the insert cursor and click Insert Code (page 199) to insert the
code into your HDevelop program.

7.2.4.2 The Browse button

The Browse button on the Code Generation tab is similar to the Save button on the Results tab. It can be used
to create file names into which the calibration results can then be written, when choosing the option Calibration

Results (File).

7.2.4.3 Sample Usage

Sample Usage shows you what is possible with your calibration data and provides code, which you can adapt
to your own purposes. Choose the action you are interested in and the example code will be inserted into your
program.

You have the choice between:

• Transform Measurements into World Coordinates,

• Transform XLD Contours into World Coordinates,

• Estimate Pose from Single Image and

• Rectify Image .

When you are finished, check the position of the insert cursor and click Insert Code (page 199) to insert the
code into your HDevelop program.

Transform Measurements Into World Coordinates
In the example code, the image coordinates of the first two mark center points are transformed into world
coordinates and this (3D) distance is calculated. First, the image coordinates of some points of interest lying
in the reference plane are obtained. Here, simply the first two mark center points of the plate are chosen and
a line is drawn between the two points for visualization. Then image coordinates are converted into world
coordinates using HALCON operator image_points_to_world_plane. The Z coordinates will be 0 by
definition because the measurement plane is the plane with the world coordinate Z=0 (on reference plane).
The distance in world coordinates is determined using distance_pp.

To adapt this code to your application, you typically exchange the mark centers for “real” points of interest.

Transform XLD Contours Into World Coordinates
In the example code, the XLD contours are transformed into world coordinates and this (3D) distance is
calculated. The points are visualized by a line. First an XLD in image coordinates, which relates to some
interesting features in the image, is obtained. Here, we simply generate a contour connecting the mark
center points of the plate by using the HALCON operator gen_contour_polygon_xld. Then a conversion
into world coordinates is performed with HALCON operator contour_to_world_plane_xld. Using the
operator get_contour_xld, mark center points are extracted in world coordinates.

To adapt this code to your application, you typically exchange the mark centers for “real” points of interest
and adapt or remove the visualization.

For further information about pose estimation, please refer to the section "Pose Estimation of known 3D
Objects With a Single Camera" in the Solution Guide III-C.

A
ss

is
ta

nt
s

198 HDevelop Assistants

Estimate Pose From Single Image
First, the position of mark centers on the calibration plate is determined. With known camera parameters,
one image is enough to determine the new pose using the HALCON operator camera_calibration.

This sample code always determines the pose of the calibration plate. There is no further adaption possible.

Rectify Image
First the desired width of the visible area in world coordinates in mm is chosen and converted to m.
Then set_origin_pose adjusts the origin so the plate is roughly centered. The HALCON operator
gen_image_to_world_plane_map generates the rectification map. Finally, images can be rectified us-
ing the rectification map by map_image.

To adapt this code to your application, you typically change the scale and origin of the new image coordinate
system.

7.2.4.4 Variable Names

For each calibration, default variable names are chosen. You can, however, use your own variable names and
change variable names for:

• Connection Handle

• Image Object

• Camera Parameters

• Start Parameters

• Loop Counter

• Image Files

• Camera Pose

• Window

Note: These are variables which you might set before the generated code or use after the generated code. Interme-
diate variables have fixed names starting with TmpCtrl or TmpObj.

When you are finished, check the position of the insert cursor and click Insert Code to insert the code into your
HDevelop program.

7.2.4.5 Code Preview

Here, you can, for example, edit or replace individual operators of the code lines proposed by the Calibration
Assistant.

For details, see also Code Generation (page 200) in the menu.

7.2.5 Calibration Assistant Reference

The Calibration Assistant consists of the following elements.

Pull-down menus:

• File

• Calibration

• Code Generation

• Help (page 200)

Tool bar with a selection of important buttons:

• Load Assistant Settings

7.2.5 Calibration Assistant Reference 199

• Save Current Assistant Settings

• Insert Code

• Calibrate (page 188)

• Help

Tabs with the dialogs for most of the tasks that can be done with the Calibration Assistant:

• Setup

• Calibration

• Results

• Code Generation (page 201)

Furthermore, it provides a status bar at the bottom in which messages are displayed. The status bar also displays
the calibration results (page 195), that is, if the calibration was successful. Please note that the status bar does
not provide a scrolling mechanism; if the displayed message is too long, move the mouse over it, so that a tool tip
displaying the full message pops up. Alternatively, if the message is only slightly larger than the status bar, you
can also drag the left or right border of the Calibration Assistant window to enlarge it.

Images are displayed in the graphics window of HDevelop.

7.2.5.1 The Menu File

Loading Assistant Settings
If you have saved the settings of a former Calibration Assistant session, you can load them again by the
menu item File . Load Assistant Settings or via the corresponding button of the tool bar.

Save Current Assistant Settings
You can save the current settings of a Calibration Assistant session using the menu item File . Save

Current Assistant Settings or the corresponding button in the tool bar. Then, you can load them
again in a later session.

Close the Calibration Assistant Dialog
When closing the Calibration Assistant dialog with the menu item File . Close Dialog, the current set-
tings are stored for the duration of the current HDevelop session. That is, as long as you do not exit HDe-
velop, you can again open the Calibration Assistant with the same settings. In contrast to this, when you exit
the Calibration Assistant, the settings are lost also for the current HDevelop session.

Exit the Calibration Assistant
When you exit the Calibration Assistant with the menu item File . Exit Assistant, the assistant’s di-
alog is closed and the current settings are lost unless you have stored them using the menu item File .
Save Current Assistant Settings. If you want to close the dialog but keep its settings for the current
HDevelop session, you should use the menu item Close Dialog instead.

7.2.5.2 The Menu Calibration

Via the menu Calibrate you can run a calibration as described in the section Calibrating (page 190).

7.2.5.3 The Menu Code Generation

Insert the Generated Code Lines
Code Generation . Insert Code lets you insert the code that is generated according to the current set-
tings of the Calibration Assistant into the program window. This is also accessible as tool bar button or
as button inside the tab Code Generation. Inserting code via menu or tool bar will generate code for
calibration and samples.

A
ss

is
ta

nt
s

200 HDevelop Assistants

Release the Generated Code Lines
With Code Generation . Release Generated Code Lines you can release the generated and inserted
code lines. After releasing the code lines, all connections between the Calibration Assistant and the Program
Window of HDevelop are lost. Changes, for example, the deletion of code lines, can then only be applied
directly in the Program Window and not from within the Calibration Assistant anymore.

Delete the Generated Code Lines
Via the menu item Code Generation . Delete Generated Code Lines you can delete the code lines
that you have previously generated and inserted (page 199) into the Program Window of HDevelop from
within the Calibration Assistant. Note that this works only as long as you have not yet released the code
lines.

Preview of the Generated Code Lines
Via the menu item Code Generation . Show Code Preview you can open the dialog for the Code

Preview in the tab Code Generation.

7.2.5.4 The Menu Help

Via the menu Help you can access the online documentation.

7.2.5.5 The Tab Setup

The Setup tab consists of the following subdivisions:

• Calibration Task (page 186)

• Calibration Plate (page 186)

• Camera Parameters (page 186)

7.2.5.6 The Tab Calibration

The Calibration tab includes:

• Image Source (page 188)

• Calibration (page 190)

• Quality Issues (page 191)

• Display Parameters (page 194)

• Calibration Plate Extraction Parameters (page 194)

7.2.5.7 The Tab Results

The Results tab includes the following subdivisions:

• Calibration Status (page 195)

• Camera Parameters (page 196)

• Camera Pose (page 196)

• Display Results (page 196)

7.2.5 Calibration Assistant Reference 201

7.2.5.8 The Tab Code Generation

The Code Generation tab includes the following subdivisions:

• Calibration (page 196)

• Sample Usage (page 197)

• Variable Names (page 198)

• Code Preview (page 198)

A
ss

is
ta

nt
s

202 HDevelop Assistants

7.3 Matching Assistant

7.3.1 Introducing the Matching Assistant of HDevelop

The Matching Assistant of HDevelop is a front-end to HALCON’s powerful matching methods:

• shape-based matching,

• correlation-based matching,

• descriptor-based matching, and

• deformable matching.

For information on these matching methods and how to choose a suitable method for your application, please refer
to the Solution Guide II-B, section 1 on page 7.

Using the Matching Assistant you can

• Configure (page 210) and test the matching process with a few mouse clicks and

• Interactively optimize the parameters for your application regarding the speed and recognition rate (page
218).

All you need is a single model image and a set of test images. The Matching Assistant guides and assists you
setting up and optimizing your matching application. Its individual elements are explained in the part Matching
Assistant Reference (page 204).

In this manual, the following special terms are used:

Matching Matching is the process of locating an object described by a model in an image. The main results of
the matching process are the position and orientation of the found object instance and its matching score.

Alignment This method can be applied to transform the position of the matched object corresponding to the
reference image. Alignment is useful if the following image processing step is not invariant against rotation
or translation, like OCR or the variation model. Note that by alignment the matched object is only rotated
and translated. More information about alignment using shape-based matching can be found in the Solution
Guide II-B, section 2.5.3 on page 33. To remove perspective or lens distortions, for example, if the camera
observes the scene under an inclined angle, you must rectify the image first.

Model The model is an internal representation of the object containing only the information characterizing the
object. This model is created by the assistant from an example image of the object, the model image, which
is provided by you. The model is used when searching for the object in the test images. You can also provide
the Matching Assistant with a model, see section 7.3.3.1 on page 204.

Model Image This is the image containing your example of the object to be searched for. This image should be
a characteristic image of the object. The object should appear in its default position and orientation and not
be occluded.

Reference Image If a reference image is selected, the position of the match in this image is used as reference.
This is necessary to perform alignment. If no reference image is chosen, the model image will be used as
basis for alignment.

Model Region of Interest (ROI) This is the region in the model image which contains the object to be trained.
You can select this region via the menu item ROI (page 205).

Rectification This method can be applied to the search image to transform it such that the found model and the
model in the reference image appear as similar as possible. Rectfying an image is useful for all further
processes that rely on fixed ROIs, like measuring and OCR.

Test Image You can test the performance of the matching process by providing test images. These images should
be representative images from your matching application. The object should appear in all allowed variations
of its position, orientation, occlusion, and illumination.

7.3.2 How to Use the Matching Assistant of HDevelop 203

7.3.2 How to Use the Matching Assistant of HDevelop

By using the Matching Assistant, you can set up and optimize your matching application in four steps.

We recommend resetting all model and search parameters via the toolbar button Reset Model (page 207) before
starting with a new matching application. This way, the parameters are reset to their default settings and the model
image, the model ROI, and the test images are deleted.

7.3.2.1 Selecting a Matching Method

Select the matching method from the pull-down menu in the toolbar (page 207) of the Matching Assistant.

7.3.2.2 Creating the Model

A model is created in three steps:

(1) Load the model image. This can be done via the menu item File . Load Model Image or the corresponding
button and text field under Model and Model Source inside the tab Creation (page 208).
Alternatively choose the Image Acquisition Assistant (page 180) as image source.

(2) Specify an ROI around the object. This can be done via the menu item ROI (page 205) or the corresponding
buttons inside the tab Creation (page 208).

(3) Specify standard and advanced model parameter values that are available for your matching method. This can
be done via the menu Parameters (page 206) or the tab Parameters (page 210).

Alternatively, you can load a model.

7.3.2.3 Testing the Model

The model can be tested by performing the following steps:

• Load one or more test images. This can be done via the menu item Usage . Test Images . Load Test

Images (page 206) or the button Load in the tab Usage (page 214).
Alternatively chose the Image Acquisition Assistant (page 180) to acquire images by activating the corre-
sponding checkbox under Test Image Source.

• Specify standard search parameter values. This can be done via the menu item Usage . Standard Model

Use Parameters (page 206), or the menu item Standard Use Parameters (page 215) in the tab Usage

(page 214).

• Assure that all objects are found in all test images by comparing the number of existing model instances
with the number of found instances (applying for example, Find Model in Usage (page 214)) or simply
determine the recognition rate (page 218).

7.3.2.4 Optimizing the Parameters

Configure your matching process such that the search is successful in all test images. To do so, you can start to
optimize the parameters on the tabs Parameters and Usage.

You can also optimize your application regarding the speed. How to do so depends on the matching method and
the specific application. We recommend to check following parameters which we see as especially promising:

• shape-based matching: The Matching Assistant allows you to optimize the search parameters Minimum

Score (page 215) and Greediness (page 215). See Solution Guide II-B, section 3.2.9 on page 72.

• deformable matching: The Matching Assistant allows you to optimize the search parameters Minimum

Score (page 215) and Greediness (page 215). See Solution Guide II-B, section 3.4.4 on page 96.

A
ss

is
ta

nt
s

204 HDevelop Assistants

• correlation-based matching: The search parameter Minimum Score (page 215) can be tuned. See Solution
Guide II-B, section 3.1.4 on page 50.

• descriptor-based matching: The model parameters Fern Number (page 210) and Fern Depth (page 210)
can be tuned. Few ferns with a large depth enable a fast online matching which, however, requires more
memory. See Solution Guide II-B, section 3.6.4 on page 113 for further optimization possibilities..

To find out if a speed up is necessary or successful, it is useful to check the Statistics on the tab Inspect (page
218).

Search parameters can also be automatically improved via the menu item Usage . Go To Optimize

Recognition Speed (page 206), or the menu item Optimize Recognition Speed (page 217) in the tab Usage
(page 214). But we recommend checking whether the matching still succeeds in all test images after each modifi-
cation.

7.3.2.5 Generate Code

Insert the code performing the chosen matching tasks within an HDevelop program. This code includes all of the
previous adaptions and can be used in the final application.

The menu Code Generation (page 207) and the tab Code Generation (page 218) allow you to choose between
several options and change parameter names, which has a direct effect on the generated code.

7.3.3 Matching Assistant Reference

The Matching Assistant shown in figure 7.5 on page 209 consists of the following elements:

• The following pull-down menus: File, ROI, Parameters (page 206), Usage (page 206), Inspect (page
207), Code Generation (page 207), and Help (page 207)

• A tool bar (page 207) for direct functionality access.

• The following tabs: Creation (page 208), Parameters (page 210), Usage (page 214), Inspect (page
218), and Code Generation (page 218)

• A status bar at the bottom in which messages are displayed. The status bar also displays the matching results.
The number of found instances, the needed time, and for each found instance the position, orientation, scale,
and score. Please note that the status bar does not provide a scrolling mechanism; if the displayed message
is too long, move the mouse over it, so that a tool tip displaying the full message pops up.

Note, not all options and parameters are supported for every matching method.

7.3.3.1 The Menu File

The menu File offers you the following options:

Menu Entry Description

Load Model

Image

Select a model image which will be used to create the model of the object you want
to find later.
The Matching Assistant can read the image file types
TIFF, BMP, GIF, JPEG, JPEG-XR, PPM, PGM, PNG, and PBM.
Note: Descriptor-based matching and correlation-based matching work on a
single channel. For color RGB images, the red channel will be used.

Load Model

Load a model that you have saved with the Matching Assistant or HALCON in DXF

format (or in the HALCON formats SHM, NCM, DSM or DFM).
Note: A model loaded from file cannot be changed and contains no information about
the image from which it was created. As a consequence, all the menu items, buttons,
and dialogs that would enable you to change the model parameters or display the
model image are not selectable.

Save Model Save the created model (page 203) in a file.

7.3.3 Matching Assistant Reference 205

Menu Entry Description

Load Camera

Parameters

Load camera parameters from file.
For more information on camera parameters see “Calibration”.
Restriction: Only supported for descriptor-based matching and deformable matching.

Load Camera

Pose

Load a camera pose from file.
For more information on poses, see for example, “Transformation . Poses” and Solu-
tion Guide III-C, section 2.1.4 on page 20.
Restriction: Only supported for descriptor-based matching and deformable matching.

Display Image

Pyramid Level

Inspect the model image pyramid and open the corresponding dialog in the tab
Creation (page 209).

Load Assistant

Settings

Load the settings of a previously saved Matching Assistant session.
Note: If the settings file refers to a model image file that is no longer available because
it has been moved or deleted since, you can choose to select an alternate model image.
If (some of) the test images cannot be loaded, a message box with the missing image
file names is displayed.

Save Current

Assistant

Settings

Save the current settings of a Matching Assistant session.

Close Dialog

Closes the Matching Assistant dialog.
In doing so, the current settings are stored for the duration of the current HDevelop
session. That is, as long as you do not exit HDevelop, you can reopen the Matching
Assistant with the same settings.

Exit Assistant
Close the assistant’s dialog and exit the Matching Assistant without storing the current
settings.

7.3.3.2 The Menu ROI

The menu ROI allows you to generate the model region of interest by drawing and modifying it on the displayed
model image.

To draw objects, click into the image and move the mouse over the object while keeping the left mouse button
pressed; the selected shape appears. After releasing the mouse button you can move the ROI by dragging its center
(marked with a cross) with the left mouse button. Furthermore, you can edit the shape by dragging its boundaries.
Finish the creation by clicking once with the right mouse button.

Menu Entry Description
Draw Circle Interactively create a circle, see gen_circle for its parameters.
Draw Ellipse Interactively create an ellipse, see gen_ellipse for its parameters.

Draw

Axis-aligned

Rectangle

Interactively create an axis-aligned rectangle, see gen_rectangle1 for its parame-
ters.

Draw Rotated

Rectangle
Interactively create an oriented rectangle, see gen_rectangle2 for its parameters.

Draw Arbitrary

Region

Create polygons and free-form shapes:

• Polygon: Click with the left mouse button to mark each corner point; a click
with the right mouse button closes the polygon and finishes the creation.

• Free-form ROI: Draw it directly while keeping the left mouse button pressed; a
click with the right mouse button closes the shape and finishes the creation.

Note that in both cases you can neither edit the ROI form nor the orientation after its
creation!

Delete

Selected ROI

Item

Delete a selected model ROI.

Delete All

ROIs
Delete all model ROIs.

A
ss

is
ta

nt
s

206 HDevelop Assistants

Menu Entry Description

Union

The ROI to be added and the existing total ROI form the new total model ROI by taking
the union of the ROIs. Note: The behavior stays for this ROI also when modifying the
model ROIs later.

Intersection

The ROI to be added and the existing total ROI form the new total model ROI by
taking the intersection of the ROIs. Note: The behavior stays for this ROI also when
modifying the model ROIs later.

Difference

The ROI to be added and the existing total ROI form the new total model ROI by
taking the difference to the existing total ROI.
Note: The behavior stays for this ROI also when modifying the model ROIs later.

XOR

(symmetrical

difference)

The ROI to be added and the existing total ROI form the new total model ROI by
taking the difference of the ROIs.
Note: The behavior stays for this ROI also when modifying the model ROIs later.

Load ROI from

File
Load an ROI as model ROI.

Save ROI to

File
Save the current model ROI.

7.3.3.3 The Menu Parameters

The menu Parameters allows you to adapt model parameters suitable to your matching application.

Note: Depending on the matching method, different parameters are available for adaption.

Menu Entry Description
Standard Model

Parameters

Open the dialog for specifying the standard model parameters (page 210) in the tab
Parameters (page 210).

Advanced Model

Parameters

Open the dialog for specifying the advanced parameters (page 212) in the tab
Parameters (page 210).

7.3.3.4 The Menu Usage

The menu Usage allows you to apply your model on test images and adapt suitable search parameters.

Menu Entry Description
Test Images .
Load Test Images

Select one or more images in a standard file selection box.

Test Images .
Remove Test

Image

Remove the currently selected test image from the list of test images.

Test Images .
Remove All Test

Images

Remove all test images from the list of test images.

Test Images .
Display Selected

Test Image

Redisplay the selected test image without newly selecting it.

Test Images .
Show Test Image

Settings

Open the dialog for Test Images (page 214) in the tab Usage (page 214).

Standard Model

Use Parameters

Open the dialog for specifying the standard search parameters (page 215) in the tab
Usage (page 214).

Advanced Model

Use Parameters

Open the dialog for specifying the advanced search parameters (page 216) in the tab
Usage (page 214).

Go To Optimize

Recognition

Speed

Open the dialog for specifying the Optimize Recognition Speed (page 217) in the tab
Usage (page 214).

7.3.3 Matching Assistant Reference 207

Menu Entry Description
Optimize

Recognition

Speed

Run the optimization as done by Run Optimization (page 217) in the tab Usage (page
214).

7.3.3.5 The Menu Inspect

The menu Inspect allows you to determine the recognition rate and the pose bounds of the found object instances
for the used set of test images.

Menu Entry Description
Determine

Recognition Rate

Open the tab Inspect (page 218) to run the recognition rate and statistics generation
as if pressing on the button Run (page 218) in the tab Inspect (page 218).

7.3.3.6 The Menu Code Generation

The menu Code Generation allows you to generate and modify the HDevelop code for your specified matching
application.

Menu Entry Description
Show Code

Generation

Options

Open the dialog for determining the options for the code generation inside the tab
Code Generation (page 218).

Show Variables

for Code

Generation

Open the dialog for determining the variables used for the code generation inside the
tab Code Generation (page 218).

Insert Code
Insert the code that is generated according to the current settings of the Matching
Assistant into the Program Window.

Release

Generated Code

Lines

Release the generated and inserted code lines.
After releasing the code lines, all connections between the Matching Assistant and the
Program Window of HDevelop are lost. That is, changes, for example, the deletion
of code lines, can then only be applied directly in the Program Window and not from
within the Matching Assistant anymore.

Delete Generated

Code Lines

Delete the code lines that you have previously generated and inserted into the Program
Window of HDevelop from within the Matching Assistant.

Show Code

Preview

Open the dialog showing the Code Preview (page 219) in the tab Code

Generation.

7.3.3.7 The Menu Help

The menu Help allows you to open the HALCON help window.

Menu Entry Description
Help Access the online documentation.

7.3.3.8 The Tool Bar

The tool bar provides buttons for direct access.

Menu Entry Description.
Load Assistant

Settings

Load the assistant settings as done via Load Assistant Settings in the menu
File (page 204).

Save Current

Assistant

Settings

Save the current settings as done via Save Current Assistant Settings in the
menu File (page 204).

A
ss

is
ta

nt
s

208 HDevelop Assistants

Menu Entry Description.
Insert Code Insert the HDevelop code as done via Insert Code in the menu Code Generation.

Save Model
Save the current matching model as done via Save Model in the menu File (page
204).

Display Model
Display the current matching model as done via Model in the tab Creation (page
209).

Reset Model

Reset the model.
This way, the parameters are reset to their default settings and the model image, the
model ROI, and the test images are deleted.

Optimize

Recognition

Speed

Optimize the recognition speed as done via Optimize Recognition Speed in the
tab Usage (page 214).

Determine

Recognition Rate

Determine the recognition rate as done via Determine Recognition Rate in the
tab Inspect (page 218).

Drop-down menu
with the matching
method

Select the matching method suiting your application.

Help Open the HDevelop help window.

7.3.3.9 The Tab Creation

The tab Creation allows you to create or load a matching model. It consists of different sections.

Model

Determine the source type for your model.

Menu Entry Description
Create from

Image
Create a new model from an image.

Load
Load an already existing model, for more information see the menu entry Load Model

Image (page 204).

Model Source

Determine the source for your model.

Menu Entry Description
Graphics Window Use the image currently shown in the graphics window (page 74).

File

Load a model (see the menu item Load Model (page 204) or a model image (see the
menu item Load Model Image (page 204) from file.
The following settings are available for loaded models:

Scale: Scale the model by the specified factor.

Use Image: Tick this option to load a reference image for the model polarity. The
reference image is loaded from
• the image currently displayed in the graphics window

• an image file (page 204),

• or from an Acquisition Assistant (page 180).

Note that when you load the model from a file, the loaded model cannot be changed
and contains no information about the image from which it was created. As a conse-
quence, all the menu items, buttons, and dialogs that would enable you to change the
model parameters or display the model image will not be selectable.

Acquisition

Assistant

Open a new acquisition assistant (page 180) session and use the resulting im-
age.

Model ROI

7.3.3 Matching Assistant Reference 209

Figure 7.5: The matching assistant and its different elements.

Pull-down menus

Tool bar

Tabs

Status bar

Depending on the source type, you can draw an ROI. Next to the options explained in the The Menu ROI

(page 205), you have the following option.

Menu Entry Description

Show List of ROI

Shapes

View the region shapes and therewith refine the ROI you have drawn. A table then
shows you your ROI data and lets you adapt the values. Remember that for polygons
and free-form ROIs, values cannot be adapted.

Modify Model Image

Modify your model image such that only “wanted” contours are left or existing contours are improved.

Enable the menu item Modify Model Image by activating the checkbox.

Restriction: Only 8-bit (byte) model images can be modified! To modify images of another bit depth, a prior
conversion is required.

Menu Entry Description

Drop-down menu:
Inpaint Regions

Remove unwanted structures by smoothing the area within the ROI.
Select the shape of the modification ROI using the buttons on the right. You can
draw the ROIs by positioning the mouse cursor as explained in the section about the
menu ROI (page 205). Use the right mouse button to conclude the choice and view
the effects of the inpainting. The shape should not only cover the area that is to be
removed but also some of the “good” area around.

Drop-down menu:
Inpaint Regions

Smooth

Smooth the area within the ROI without completely removing structures.
Select the shape of the modification ROI using the buttons on the right. You can
draw the ROIs by positioning the mouse cursor as explained in the section about the
menu ROI (page 205). Use the right mouse button to conclude the choice and view
the effects of the inpainting. The shape should not only cover the area that is to be
removed but also some of the “good” area around.

Drop-down menu:
Remove Contours

Delete selected contours from your model.

• Remove edges by selection: Remove edges by clicking on a contour
with your mouse cursor in the image.

• Delete all modification ROIs

• Show list of modification ROIs

• Load modification ROIs used to modify the model image

• Save modification ROIs used to modify the model image

Note: The model will automatically adapt to the modified image and it may happen
that the deleted contour is found again after the automatical adaption.
Strength determines the strength of the removal, that is, the smoothing width.

Drop-down menu:
Repair Edges

Draw a linear Modification ROI that connects the two ends of the existing contour.
Use Edge Thickness to determine the edge thickness either by directly adjusting the
values in the box or by using the slider.

Display

unmodified Model

Image

Display the image as it was before it was modified.

Save Image Save the modified image.
Display

modification

ROIs

Display all modification ROIs.

Display Image Pyramid Level

Inspect the model image pyramid. This means, you can display the model image and the model (overlaid on
the model image) on a selected pyramid level.
See the Solution Guide II-B, section 2.3 on page 25 for more information on the image pyramid.
Note that the highest available pyramid level is determined automatically by the Matching Assistant based

A
ss

is
ta

nt
s

210 HDevelop Assistants

on the size of the model ROI; depending on the selected Contrast and Min. Component Size, higher
pyramid levels may not contain any model points.

Menu Entry Description
Image Select the pyramid level of the displayed image using the sliders.
Model Select the pyramid level of the displayed model contours using the sliders.

Lock/unlock but-
ton

Enforce the same level for the model image and the model or to enable different level
selections.

Calibration Source

Select a calibration source.

Menu Entry Description
None No calibration data is used.
Calibration

Files
Load your data files (files that end with .cal or .dat)

Calibration

Assistant
Use the Calibration Assistant (page 184) for a guided calibration.

The Tab Parameters

The tab Parameters allows you to adapt various model parameters so the model suits your matching appli-
cation.

Menu Entry Description
Standard Model

Parameters

Set the basic model parameters. An overview is given in the part Standard Model
Parameters

Advanced Model

Parameters

Set additional parameters that let you handle special cases and further optimize the
model. An overview is given in the part Advanced Model Parameters (page 212)

Note: The supported parameters depend on the matching method.
For shape-based matching, the results of the generated code may vary from the generated results shown for
the Test Images in the tab Usage (page 214) due to automatic value determination.

Standard Model Parameters

The following table gives you an overview over the available standard model parameters for each matching
method: The abbreviations used are SBM for shape-based matching, CBM for correlation-based matching,
DBM for descriptor-based matching, and DM for deformable matching.

Menu Entry Description

Contrast

(High/Low)

SBM: 3, CBM: 5, DBM: 5, DM: 3
The two parameters Contrast (Low) and Contrast (High) for shape-based
matching and Contrast for deformable matching determine which pixels in the se-
lected ROI are included in the model.
When you select a value, either by using the sliders or by entering a value in the text
fields next to them, the included pixels are marked in the displayed image.
For information on the functionality of these parameters see their docu-
mentation in set_generic_shape_model_param (shape-based matching) and
create_planar_uncalib_deformable_model (deformable matching), respec-
tively.

Auto Select: The Matching Assistant selects a suitable value automatically
based on the model image. It selects the value by trying to obtain many long and
straight contour segments.
Note: You may need to set the value manually if certain model components should be
included or suppressed because of application-specific reasons or if the object contains
several different contrasts.

7.3.3 Matching Assistant Reference 211

Menu Entry Description

Min. Component

Size

SBM: 3, CBM: 5, DBM: 5, DM: 5
Specify the minimum size, that is, number of pixels, which contour parts must have to
be included in the model.
For information on the functionality of the parameter see its documentation in
set_generic_shape_model_param.

Auto Select: The Matching Assistant selects a suitable value automatically
based on the model image.

Pyramid Levels

SBM: 3, CBM: 3, DBM: 5, DM: 3
Select the number of pyramid levels. You can enter the value directly in the text field
or by using the slider next to it.
See the Solution Guide II-B, section 2.3 on page 25 for more information about the
image pyramid and its levels.
See also Display Image Pyramid (page 209) for information how to inspect the
model image pyramid.

Auto Select: The Matching Assistant selects a suitable value automatically
based on the model image.
Please note that in rare cases the automatic selection will yield a too low value and
thereby slow down the search process, or a too high value, resulting in failures to rec-
ognize the object. In such a case we recommend that you inspect the model image
pyramid (page 209) and select a suitable value manually.

Starting Angle

SBM: 5, CBM: 3, DBM: 5, DM: 3
Specify the starting angle of the allowed range of rotation (unit: °).
Example: To allow model rotations up to +/-5 °, for example, you should set the start-
ing angle to -5 ° and the angle extent to 10 ° or angle end to 5 °.
Note: The range of rotation is defined relative to the created model, that is, for a model
created from an image a starting angle of 0 ° corresponds to the orientation the object
has in the model image.

Angle Extent

SBM: 5, CBM: 3, DBM: 5, DM: 3
Specify how much the object is allowed to rotate (unit: °).
Example: To allow model rotations of up to 10 °, for example, you should set the angle
extent to 10 °.

Min./Max. Angle

SBM: 5, CBM: 5, DBM: 3, DM: 5
Define the range for the angle of rotation around the normal vector of the model.
For further information see create_uncalib_descriptor_model, part “Simulation
parameters” ’min_rot’ and ’max_rot’.

Min./Max.

Column/Row Scale

SBM: 3, CBM: 5, DBM: 5, DM: 3
Define the allowed scaling range.
The allowed range of scale is defined separately in row and column direction. Thus, it
is described by the parameters:
• Min. Column Scale

• Max. Column Scale

• Min. Row Scale

• Max. Row Scale

The model template has scaling values of 1.0. This means, if the model was generated
from a model image, the scaling values of the model instance in this image are 1.0.
Depending on the specified parameters, the most efficient scaling method is used. This
means:
• Unscaled matching: This method is used if all four scale factors are equal to

1.0.

• Isotropically scaled matching: This method is used if rows and columns have
the same scaling factors (but not all are equal to 1.0).

• Anisotropically scaled matching: This method is used if rows and columns
have different scaling factors.

A
ss

is
ta

nt
s

212 HDevelop Assistants

Menu Entry Description

Min./Max. Scale

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify the scale range of the model.
For further information see create_uncalib_descriptor_model, part “Simulation
parameters” ’min_scale’ and ’max_scale’.

Model Type

SBM: 5, CBM: 5, DBM: 5, DM: 3
Select between two model types, depending on the expectations concerning the defor-
mation of the object:
• local deformable

• planar

Detector Type

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify the type of detector. The detector is used for the extraction of stable interest
points within the image. Available types:
• lepetit

• harris

• harris_binomial

For more information on the detector types see
create_uncalib_descriptor_model.

Radius

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the radius of the circle in the Lepetit method.
For further information see create_uncalib_descriptor_model and
points_lepetit.
Restriction: Only for detectors of type lepetit.

Min. Score

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify the minimum score a potential match must have to be returned as match.
For more information and recommendations see Solution Guide II-B, section 3.6.4.4
on page 115.
Restriction: Only for detectors of type lepetit.

Gradient Sigma

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the amount of smoothing used for the gradient calculation.
For further information see create_uncalib_descriptor_model and SigmaGrad

in points_harris.
Restriction: Only for detectors of type harris.

Gradient Mask

Size

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the amount of smoothing used for the gradient calculation.
For further information see create_uncalib_descriptor_model and
MaskSizeGrad in points_harris_binomial.
Restriction: Only for detectors of type harris_binomial.

Threshold.

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the minimum filter response for the points.
For further information see create_uncalib_descriptor_model and Threshold

in points_harris and points_harris_binomial.
Restriction: Only for detectors of type harris and harris_binomial.

Fern Depth

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify the depth of the classification fern.
For more information see the explanation of the ’depth’ in Solution Guide II-B,
section 3.6.3.2 on page 112.

Fern Number

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify the number of used fern structures.
For more information see the explanation of the ’number_ferns’ in Solution Guide
II-B, section 3.6.3.2 on page 112.

Advanced Model Parameters

The following table gives you an overview over the available advanced model parameters for each matching
method: The abbreviations used are SBM for shape-based matching, CBM for correlation-based matching,
DBM for descriptor-based matching, and DM for deformable matching.

7.3.3 Matching Assistant Reference 213

Menu Entry Description

Angle Step

SBM: 3, CBM: 3, DBM: 5, DM: 3
Determine the step length within the selected range of angles.
For further information see Solution Guide II-B, section 3.2.4.4 on page 61
(shape-based matching), create_ncc_model (correlation-based matching), and
find_planar_uncalib_deformable_model (deformable matching).
Note: Each time you create a model ROI or change the parameter Contrast (page
210), the Matching Assistant automatically selects a suitable value for Angle Step

to obtain the highest possible accuracy.
Auto Select: The Matching Assistant selects a suitable value automatically.

Row/Column Scale

Step

SBM: 3, CBM: 5, DBM: 5, DM: 3
Determine the step length within the selected scaling in row and column direction.
For further information see Solution Guide II-B, section 3.2.4.3 on page 60 (shape-
based matching) and find_planar_uncalib_deformable_model (deformable
matching).
Note: Each time you create a model ROI or change the parameter Contrast (page
210), the Matching Assistant automatically selects a suitable value for Row Scale

Step and Column Scale Step to obtain the highest possible accuracy.
Auto Select: The Matching Assistant selects a suitable value automatically.

Metric

SBM: 3, CBM: 3, DBM: 5, DM: 3
Specify how pixels are compared with the model, more precisely whether and how the
polarity must be observed.
For information on the functionality of the parameter and its possible values see So-
lution Guide II-B, section 3.2.4.5 on page 62 (shape-based matching) Solution Guide
II-B, section 3.1.3.3 on page 49 (correlation-based matching), and Solution Guide
II-B, section 3.4.3.4 on page 96 (deformable matching).

Optimization

SBM: 3, CBM: 5, DBM: 5, DM: 3
Determine the number of points by which the model is reduced.
For further information see Solution Guide II-B, section 3.2.4.2 on page 59 (shape-
based matching) and Solution Guide II-B, section 3.4.3.2 on page 95 (deformable
matching).

Auto Select: The Matching Assistant selects a suitable value automatically
based on the model image.

Min. Contrast

SBM: 3, CBM: 5, DBM: 5, DM: 3
Determine the minimal contrast (gray value difference to neighboring pixels) a point
in a search image must at least have in order to be compared with the model during
the matching process.
For information on the functionality of the parameter see
set_generic_shape_model_param (shape-based matching) and Solution Guide
II-B, section 3.4.3.4 on page 96 (deformable matching).

Auto Select: The Matching Assistant selects a suitable value automatically
based on the model image.

Check Neighbor

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the number of checked neighbors in the circle when using the Lepetit
method.
For further information see create_uncalib_descriptor_model and
CheckNeighbor in points_lepetit.
Restriction: Only for detectors of type lepetit.

Neighbor Diff.

Threshold

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the threshold of gray value difference to each circle point when using the
Lepetit method.
For further information see create_uncalib_descriptor_model and
MinCheckNeighborDiff in points_lepetit.
Restriction: Only for detectors of type lepetit.

Subpixel

SBM: 5, CBM: 5, DBM: 3, DM: 5
Turn the refinement for subpixel accuracy on or off.
For further information see create_uncalib_descriptor_model and SubPixel

in points_lepetit and points_harris_binomial.
Restriction: Only for detectors of type lepetit and harris_binomial.

A
ss

is
ta

nt
s

214 HDevelop Assistants

Menu Entry Description

Patch Size

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify the side length of the quadratic neighborhood that is used to describe the
individual interest point.
For more information see the explanation of the ’patch_size’ in Solution Guide
II-B, section 3.6.3.2 on page 112.

Tilt

SBM: 5, CBM: 5, DBM: 3, DM: 5
Specify whether the projective transformations are used during the simulation.
For more information see the explanation of the ’tilt’ in Solution Guide II-B, sec-
tion 3.6.3.2 on page 112.

Smoothing Sigma

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the amount of smoothing used for the integration of the gradients.
For further information see create_uncalib_descriptor_model and
SigmaSmooth in points_harris.
Restriction: Only for detectors of type harris.

Alpha

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the weight of the squared trace of the squared gradient matrix.
For further information see create_uncalib_descriptor_model and Alpha in
points_harris and points_harris_binomial.
Restriction: Only for detectors of type harris and harris_binomial.

Smoothing Mask

Size

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine the amount of smoothing used for the integration of the gradients.
For further information see create_uncalib_descriptor_model and
MaskSizeSmooth in points_harris_binomial.
Restriction: Only for detectors of type harris_binomial.

Min. Size

SBM: 5, CBM: 5, DBM: 5, DM: 3
Suppress small connected components of the model contours.
For more information see the explanation of the ’min_size’ in Solution Guide II-B,
section 3.4.3.5 on page 96.

Part Size

SBM: 5, CBM: 5, DBM: 5, DM: 3
Adjust the size of the model sub-parts.
For more information see the explanation on the ’part_size’ in Solution Guide
II-B, section 3.4.3.5 on page 96.

7.3.3.10 The Tab Usage

The tab Usage allows you to apply your model on test images and adapt suitable search parameters.

Test Image Source

Determine the source type of your test images.

Menu Entry Description
Image Files Test images are loaded from file.
Image Acquisition
Assistant Use the Image Acquisition Assistant (page 180) to acquire your test images.

Test Images

You can select a test image from the text box of the dialog Test Images. The selected image is automati-
cally displayed in the graphics window of HDevelop.

Menu Entry Description

Load/Add
Load an image from file or add an image using the Image Acquisition Assistant (page
180).

Live Image
Add the image acquired by the live image acquisition mode of the Image Acquisition
Assistant (page 180).

Remove Remove the currently selected test image from the list.
Remove All Remove all test images.

7.3.3 Matching Assistant Reference 215

Menu Entry Description

Save
Save the selected image if it has been added using the Image Acquisition Assistant
(page 180).

Save All Save all images added by the Image Acquisition Assistant (page 180).

Set Reference

Set the match in the chosen image as reference position for alignment.
Note: This is only possible if a match is detected in the image. If no reference image
is chosen, the model image will be used as basis for the alignment or rectfication.

Detect All

Search all objects in the complete sequence of test images that were loaded before
(independent of the set Maximum Number of Matches). The results are displayed
successively in the graphics window.
Note: For descriptor-based matching this also sets the Maximum Number of

Matches if it has not been set previously (it is set to 0).
Note: This also sets the number of visible objects in the test image if it has not been
set previously.
Note: If the button is clicked for the first time or after you changed a model parameter,
the internally stored model is actually created, which takes some time.

Find Model

Search the object in the currently selected test image. The result is displayed in the
assistant window.
Note: If the button is clicked for the first time or after you changed a model parameter,
the internally stored model is actually created, which takes some time.

Always Find

Start the matching process automatically on the selected test image. The result is
displayed in the graphics window.
Note: If the matching process is started for the first time of after you changed a model
parameter, the internally stored model is actually created, which takes some time.

Number of Visible
Objects in Test Im-
age

Specify how many objects are really visible in the current test image. To do so, click
onto the currently displayed number of detected objects (Visible) in the text field of
the currently selected test image. The specified numbers of visible objects are used
when determining the recognition rate, that is, the recognition rate is 100% when the
sum of all objects found in the test images is equal to the sum of the specified numbers.

Specifying Standard Search Parameters

The menu item Standard Use Parameters allows you to specify search parameters.

The following table gives you an overview over the available standard search parameters for each matching
method: The abbreviations used are SBM for shape-based matching, CBM for correlation-based matching,
DBM for descriptor-based matching, and DM for deformable matching.

Menu Entry Description

Starting Angle

SBM: 3, CBM: 5, DBM: 5, DM: 5
Specify the starting angle of the allowed range of rotation (unit: °).
Example: To allow model rotations up to +/-5 °, for example, you should set the start-
ing angle to -5 ° and the angle extent to 10 ° or angle end to 5 °.
Note: The range of rotation is defined relative to the created model. For a model cre-
ated from an image a starting angle of 0 ° corresponds to the orientation the object has
in the model image.

Ending Angle

SBM: 3, CBM: 5, DBM: 5, DM: 5
Specify the ending angle of the allowed range of rotation (unit: °).
Example: To allow model rotations up to +/-5 °, for example, you should set the ending
angle to 5 ° and the starting angle extent to -5 °.
Note: The range of rotation is defined relative to the created model. For a model
created from an image an ending angle of 0 ° corresponds to the orientation the object
has in the model image.

Minimum Score

SBM: 3, CBM: 3, DBM: 3, DM: 3
Specify the minimum score that a potential match must reach to be regarded as model
instance in the image.
For further information see Solution Guide II-B, section 2.5.6 on page 45.

A
ss

is
ta

nt
s

216 HDevelop Assistants

Menu Entry Description

Maximum Number

of Matches

SBM: 3, CBM: 3, DBM: 3, DM: 3
Specify how many instances of the object are searched for in the image. If you specify
the value 0, all found instances are displayed.
Note: The parameter sets a maximum value, that is, if more object instances are
present in the image only the best instances of the specified number are displayed.

Specifying Advanced Model Search Parameters

The menu item Advanced Use Parameters allows you to specify search parameters.

The following table gives you an overview over the available advanced search parameters for each matching
method: The abbreviations used are SBM for shape-based matching, CBM for correlation-based matching,
DBM for descriptor-based matching, and DM for deformable matching.

Menu Entry Description

Greediness

SBM: 3, CBM: 5, DBM: 5, DM: 3
Determine how ’greedily’ the search should be carried out.
For more information see Solution Guide II-B, section 2.4.3 on page 29.

Maximum Overlap

SBM: 3, CBM: 5, DBM: 5, DM: 3
Determines by what fraction two instances may overlap at most in order to be consid-
ered as different instances and hence to be returned separately.
For a schema see Solution Guide II-B, section 3.2.6.4 on page 66.

Subpixel

SBM: 3, CBM: 3, DBM: 5, DM: 3
Determine which type of subpixel refinement should be carried out.
For more information and possible values see Solution Guide II-B, section 3.2.6.6
on page 69, (shape-based matching) find_ncc_model (correlation-based matching),
and find_planar_uncalib_deformable_model (deformable matching).

Max Deformation

SBM: 3, CBM: 5, DBM: 5, DM: 5
Determine by how much an object is allowed to deviate from the model in order to
be considered as a match. The maximal allowable object deformation is specified in
pixels.
For more information see Solution Guide II-B, section 3.2.6.6 on page 69.

Last Pyramid

Level

SBM: 3, CBM: 3, DBM: 5, DM: 3
Determine the lowest pyramid level to which the found matches are tracked.
For more information on the image pyramid see Solution Guide II-B, section 2.3 on
page 25.
Note: The lowest pyramid level is denoted by a value of 1 (shape-based and de-
formable) and 0 (correlation-based), respectively.
Example: When selecting the value 2, the matching starts at the highest pyramid level
and tracks the matches to the second lowest pyramid level.

Timeout

SBM: 3, CBM: 3, DBM: 5, DM: 5
Set a maximum runtime of the operators used to find the shape model. To use the
Timeout function, activate Enable on the right side of the tab. Then choose the time
in milliseconds after which the search for a model is aborted.

Shape models may

cross the image

border

SBM: 3, CBM: 5, DBM: 5, DM: 5
Determine whether the models to be found may lie partially outside the image, that is,
whether they may cross the image border, independent of the domain.
For more information see the description of the parameter border_shape_models of
set_generic_shape_model_param.

Robust Pyramid

Tracking

SBM: 3, CBM: 5, DBM: 5, DM: 5
Enable a mode to automatically detect during the search the lowest image pyramid
level on which at least one match can be found.
For more information see the description of the parameter
pyramid_level_robust_tracking of set_generic_shape_model_param.

Score Type

SBM: 5, CBM: 5, DBM: 3, DM: 5
Define the type of score to be evaluated.
For more information on the parameter and possible values see Solution Guide II-B,
section 3.6.4.6 on page 115.

7.3.3 Matching Assistant Reference 217

Menu Entry Description

Descriptor Min.

Score

SBM: 5, CBM: 5, DBM: 3, DM: 5
Determine what score a potential match must at least have to be regarded as an instance
of the model in the image.
For more information on the parameter see Solution Guide II-B, section 3.6.4.4 on
page 115.

Guided Matching

SBM: 5, CBM: 5, DBM: 3, DM: 5
Enable the usage of an already approximately known homography to ’guide’ the
matching process, which enhances the accuracy of the object recognition.
For more information on the parameter see Solution Guide II-B, section 3.6.4.3 on
page 114.

Optimizing the Recognition Speed

This section allows you to optimizes the recognition speed by means of automatically determining the values
for the parameters Minimum Score (page 215) and Greediness (page 215).

How it works: At the beginning, the Greediness is set to 0 and the Minimum Score to 1. Then, the
minimum score is decreased until the matching succeeds in all test images, that is, until the recognition rate
is 100%. Now, the Greediness is increased as long as the matching succeeds. This process is repeated
until the optimum parameters are found. You can lower the threshold of acceptance for the recognition rate
manually using the corresponding slider or text box at the bottom of the dialog. The Matching Assistant then
displays the optimal values for Minimum Score and Greediness and the reached recognition time. The
found values are set as new search parameters.

The speed is calculated as the average recognition speed over all test images.

Menu Entry Description
Run Optimization Run the optimization.

Stop
Interrupt the process of optimizing the recognition speed; please note however, that
this event is processed only after the current search has finished.

Mode

Specify how the recognition rate is defined. The following options are supported:
• Find number of instances specified in the table above:

In each test image, as many objects are expected as specified manually (page
214).
The recognition rate is calculated as the relation of found objects to the sum of
expected objects over all images. It is 100% if in each image exactly as many
objects are found as specified.
Note: If you select Maximum Number of Matches (page 215) = 0 and specify
a lower number of visible objects than found in a test image, a recognition rate =
100% results in a completely confused optimization algorithm. You may handle
this case by selecting the condition >= 100% for the recognition rate.

• Find at least one model instance per image:
In each test image at least one model instance is expected.
The recognition rate is calculated as the percentage of test images which fulfill
this condition. It is 100% if in all test images at least one object is found.

• Find maximum number of model instances per image:
In each test image, as many objects are expected as specified in the parameter
Maximum Number of Matches (page 215).
The recognition rate is calculated as the relation of found objects to the sum
of expected objects over all images. It is 100% if in all test images (at least)
Maximum Number of Matches objects are found.

Recognition Rate Determine the required recognition rate.

A
ss

is
ta

nt
s

218 HDevelop Assistants

7.3.3.11 The Tab Inspect

The tab Inspect allows you to obtain the Recognition Rate and Statistics.

Menu Entry Description
Run Determines the recognition rate by searching for the object in all loaded test images.

Stop
Interrupt the process of determining the recognition rate; please note however, that
this event is processed only after the current search has finished.

Recognition Rate The recognition rate calculated for different criteria. Note that it depends on the set Maximum
Number of Matches (page 215) and specified number of visible objects (page 214).

Statistics The minimum, maximum and extent for different pose parameters of the found instances as well as
for the score and execution time are shown. The range of positions, orientations, and scales in which the
object appears in the test images are shown.

7.3.3.12 The Tab Code Generation

The tab Code Generation allows you to generate and modify the HDevelop code for your specified matching
application.

Options

This section allows you to determine, which code parts are to be inserted.

Menu Entry Description

Insert Code
Insert the code generated by the Matching Assistant into the Program Window of
HDevelop, see the corresponding menu item (page 207).

Create model

from a model

image at runtime

In the application code the matching model will be created at runtime.
Select the source for its model image:
• Use image: Use the unmodified model image.

• Load modified image: Load the modified model image (page 209) you saved
previously.

Select how the model ROI is set:
• Create ROI as in assistant: Use the specified ROI.

• Generate Code for drawing an ROI at runtime: A new ROI has to be
drawn at runtime.

Load model file: In the application code the matching model will be loaded from file.
Load recently

saved model file
In the application code the recently saved model will be loaded from file.

Initialize

Acquisition
Insert code to initializing an image acquisition device.

Generate display

code
Display the detected model instances in a loop.

Generate value

retrieving code
Generate code to retrieve the parameter values of the found matches in a loop.

Note: For shape-based matching only.

Generate affine

transformation

code

Insert code for an affine transformation that can be used for alignment.
Note: A reference image (page 214) has to be set on the Usage tab, otherwise the
model image is used.
Restriction: Only for shape-based matching.

Generate

rectification

code

Insert code for rectifying the image of detected model instances.
Note: A reference image (page 214) has to be set on the Usage tab, otherwise the
model image is used.

Specifying the Variable Names for the Code Generation

7.4 Measure Assistant 219

This section allows you to modify the names of individual variables needed for the code lines.

The dialog consists of a text field for every variable. The Matching Assistant automatically generates rea-
sonable variable names, but you can change the individual names via the text fields.

Code Preview

This section allows you to preview the generated code and gives you the possibility to, for example, edit or
replace individual operators of the code lines proposed by the Matching Assistant.

7.4 Measure Assistant

7.4.1 Introducing the Measure Assistant of HDevelop

The Measure Assistant of HDevelop is a front-end to HALCON’s 1D measuring. Using the Measure Assistant you
can, for example,

• easily set parameters and perform a visual inspection,

• quickly measure distances between edges along a straight line or circular arc,

• choose the results you need (page 222),

• perform a calibration to transfer your results to world coordinates (page 223), and

• if necessary, use advanced features to, for example, optimize your measuring under difficult conditions with
fuzzy measuring (page 225).

Using the Measure Assistant is simple: all you need is to setup the measure task to detect all relevant edges and
add the resulting code to your application.

When you start a project for the first time, read “How to Use the Measure Assistant of HDevelop”.

When looking for an overview over all Measure Assistant elements, please refer to the reference (page 228).

In this online help, the following special terms are used:

Edge An edge defines a gray-value transition that is either

• positive, which means that it changes from dark to bright, or

• negative, which means that it changes from bright to dark.

Edge Pair An edge pair always consists of two edges, one with a positive gray-value transition and one with a
negative gray-value transition.

1D Measuring (also called 1D metrology or caliper) This is a fast and easy-to-use method for measuring ob-
jects in one dimension, along a line or circular arc. It is based on extracting edges perpendicular to a line of
measurement and measuring, for example, positions and the distances between them.

Region of Interest (ROI) This region specifies where to look for edges and the direction needed to determine the
gray-value transition.

Fuzzy Measure Fuzzy Measuring allows a more detailed specification of the object parts to be measured by
selecting edges according to different criteria. This can also be useful for images that contain unwanted
gray-value edges due to, for example, reflections on the surface . Fuzzy Measure (page 225).

Fuzzy Score The fuzzy score is part of fuzzy measuring and describes an evaluation of the quality of an edge.
It is more than just an edge amplitude because it is the result of specifying different criteria and areas for
edges as well as a tolerance. The score is calculated as a median value. A “good” edge is completely within
a previously specified area for fuzzy measuring and has a fuzzy score of “1”. If an edge is on the border of a
fuzzy measure area, the Fuzzy Score describes how far the edge is still on the “good” side. The value can
range from 0 to 1. Tolerances can be defined by the user. . Fuzzy Score (page 225).

A
ss

is
ta

nt
s

220 HDevelop Assistants

7.4.2 How to Use the Measure Assistant of HDevelop

The Measure Assistant allows you to easily choose the dimensions of an object you need in just a few steps.

7.4.2.1 Set up the Measure Task

It is very easy to set up the measure task with the Measure Assistant:

• Choose your Image Source on the Input tab by either using the content of the Graphics Window, loading
an Image File, or acquiring the image of an object using the Image Acquisition Assistant.

• Create an ROI using the buttons Draw Line or Draw Circular Arc, which you find in the toolbar of the
Measure Assistant. Place the ROI perpendicular to the edges you want to measure.

• Now, that you have located the ROIs, you can extract edges within the chosen region(s) and therefore use the
functionality of the Edges tab.

The Input tab offers two more options that you can use if necessary. If you already have calibration data available,
you can load the data as described in the paragraph Calibration Source (page 223), otherwise just return to the
Input tab later. A more advanced feature is changing the mode of the expected gray-value range which is only
relevant if your image data uses more than 8 bits. Read more about this topic under Expected Gray Value

Range (page 224).

In case your edge extraction is not as successful as expected, further improvements can be made using the fuzzy
measuring function of the assistant (page 225).

Image Source
The Input tab lets you choose images from the following sources:

• If your image has already been opened in the Graphics Window, you can activate Graphics Window

to continue working with the currently displayed image.

• You can load an image file by activating Image File or choosing Load Image from the menu File

and the tool bar, respectively, and either typing in the image path or using the Browse button on the
right to choose an image from a file.

• Another option is to activate the radio button for the Image Acquisition Assistant. Being connected
to this assistant, you can acquire the image you want to measure in and you can even choose to work
with a Live image. The same operations can be performed by clicking the Snap or Live symbols in
the tool bar.

Note that the measuring works on a single channel. For color RGB images, the red channel will be used. A
color transformation can be performed with the operator trans_from_rgb.

When you have loaded your image, you can continue to create an ROI. If your image data exceeds 8 bit, you
can change the expected gray-value range (page 224). If you want to load calibration data or calibrate now,
proceed to the section Calibration Source (page 223).

Create an ROI
Create an ROI by using the buttons Draw Line or Draw Circular Arc in the tool bar. The shape of the
ROI should be chosen according to the shape of the object to be inspected.

After having chosen the ROI shape, you “draw” the ROI in the Graphics Window by keeping the left mouse
button pressed. Then, modify the ROI until it has the correct shape. For linear ROIs you can modify the
length by “dragging” the line’s end points or move it by dragging its center. For circular ROIs you can
additionally modify the radius by dragging one of the four circle points that are located at 0, 90, 180, and
270 degrees. When you are finished, click the right mouse button, to confirm your choice. The ROI will
already display edges if those can be detected with default parameters.

Remember that the ROI should run perpendicular to the edges you want to measure.

If you have previously prepared and saved an ROI, you can reuse it by choosing Load ROI.

In order to delete one or more ROIs you can either mark them and just press the delete button on your
keybord or click the tool bar buttons for Delete Selected ROI Item or Delete All ROIs.

7.4.2 How to Use the Measure Assistant of HDevelop 221

You can view and edit the ROI data, which includes all the data about the exact position of the ROI(s), using
the tool bar button View ROI Data. Editing an ROI by changing the ROI data is useful if an ROI should be
modified more precisely than is possible by drawing in the graphics window.

When you are satisfied with the shape of your ROI, proceed to the edge extraction on the Edges tab.

7.4.2.2 Extract Edges

After you have prepared the measure task (page 220), you continue to choose parameters on the Edges tab such
that you can detect the edges between which you want to measure:

• On the tab Edge under Edge Extraction you can specify the parameters that are used to extract edges.

• Edge Selection allows you to group edges to pairs or choose edges with certain features.

• In order to improve the visibility of your ROI and edges, you can change the display parameters.

Now, you can select edges you want to measure and afterwards proceed to the Results tab to view your measuring
results.

Open the Line Profile window (page 106) to inspect edges along an ROI. If necessary, that is, if your edge
extraction is not as successful as expected, you can refine the determination of the edges you need for measuring
by using the Fuzzy Measure (page 225) option you find on the Fuzzy tab. Fuzzy measuring allows you to specify
certain ranges within which edges are labeled “good”.

Edge Extraction
You can optimize edge extraction by adapting the following parameters on the Edges tab:

• With Min. Edge Amplitude you can specify how strong an edge must be to be selected. Adapt this
parameter such that only your desired edges are selected. Note that very small values should only be
used with high quality images, otherwise false edges might be caused by noise.

• Smoothing is helpful to reduce noise and therefore the detection of false edges. Please note, however,
that smoothing distorts the edge profiles, i.e, edges are detected at a slightly wrong positions and the
accuracy decreases. When using the line profile tool (page 106), smoothing can either be applied with
the Measure Assistant or it can be performed with the smoothing slider within the line profile window.
The smoothing values are immediately transfered to the Measure Assistant and the line profile window,
respectively.

• With ROI Width you can specify how many pixels perpendicular to the line or arc of measuring are
used to detect edges. A larger value helps to reduce noise; however, if the edges themselves are not
perpendicular to the line or arc of measure you must choose a smaller value, otherwise the edge will
“loose its strength”. The general rule here is to choose the ROI always perpendicular and as wide as
possible. This will lead to both a high precision and accuracy. If changing the ROI width leads to an
edge length that is inconvenient for the display, for example, because it is very short or very long, you
can choose another length for the display instead of the ROI width under Display Parameters.

• With the Interpolation Method you influence the accuracy of the edge extraction, but also the pro-
cessing time. Processing time and accuracy both increase from nearest_neighbor over bilinear
up to bicubic. Activating Highest Accuracy influences the way the interpolation is calculated, it
takes a bit more processing time and also slightly improves accuracy.

If one or more edges cannot be found without further processing, or if false edges are detected, the Line

Profile (page 106) which can be opened with the View Line Profile button on the upper right edge of
the Edges tab can provide the missing details to solve the problem. In its display, the line profile shows a
green line with a gray top for each successfully detected edge that is above a certain level to qualify as an
edge. Potential edges that do not qualify as edges are displayed as vertical red lines. It may also be helpful
to view the line profile along an ROI while changing parameters for edge detection, to see exactly how your
actions influence the line profile and therefore possibly change which edges are detected. This profile can
consequently be a basis for the decision which steps should be taken next, that is, what would be necessary
to enhance weak edges or suppress false edges.

In order to select which edges or edge pairs from your current results are relevant, proceed to Edge

Selection. If you are already satisfied with the detected edges, continue to the Results tab.

A
ss

is
ta

nt
s

222 HDevelop Assistants

Edge Selection
Edge Selection allows you to specify what kind of edges you are looking for. First you decide whether
you want to find single edges or edge pairs. Depending on your choice, you have different options for
the drop-down menus Transition and Position. These options will be explained for edge pairs in the
following paragraph and subsequently for single edges.

You can activate Group Edges to Pairs to find an even number of edges with alternating transitions. The
parameter Transition lets you select which edges are chosen to resolve ambiguity: The default setting of
all will always accept the first matching edge. The values positive and negative restrict the transition
of the very first edge. The *_strongest variants will pick the strongest edge instead of the first edge in a
sequence of edges with the same transition. Position lets you decide whether you are looking for all edge
pairs, or just want to detect the first or last edge pair.

If you are looking for single edges (instead of edge pairs) you can choose with Transition whether you
want edges with all transitions (positive and negative) or just positive or just negative. Using
Position, you can then determine whether you are looking for all edges or just want to detect the first
or the last edge.

When you are satisfied with your selection, you can view your measuring results on the Results tab.

7.4.2.3 Display Parameters

Changing display parameters on the Edges tab may help you to make the ROI in your image better visible and
therefore easier to work with.

You can change

• the Region Color and also activate Show Region to see the actual size of your region which may be
convenient if you do not use the ROI width as edge length.

• the Edge Color and also activate Use Shadows if this is beneficial for the visibility.

• the Edge Length, which is the ROI width in default mode, to improve the visibility of the edges, and

• the Line Width.

When you are satisfied with your detected edges as well as with the display parameters, continue to the Results
tab.

7.4.3 Results

The Results tab lets you choose which results are relevant for your application and displays these results in a
spreadsheet.

When you are satisfied with the results, continue to the Code Generation tab to receive the code for your appli-
cation. Otherwise, go back to adapt your edge extraction (page 221) or calibrate your system.

7.4.3.1 Feature Selection

Feature selection lets you choose the features that are relevant for your application. The results of those features
are measured and displayed below. All features are activated by default. It is, however, useful to deactivate those
which are not needed to improve performance and readability.

You can choose between:

• Position,

• Amplitude,

• Distance,

• Pair Width, and

• Fuzzy Score.

When you have chosen your features, you can either continue to Feature Processing if you want your results
transformed into world coordinates, or, proceed to Edge Data to view the results for each ROI.

7.4.4 Code Generation 223

7.4.3.2 Feature Processing

Here, you can decide whether you want to receive your results in world coordinates and if so, you can choose a
suitable Unit. This step will be unavailable if you have not calibrated your setup. If you want to transform your
measurement results into world coordinates, you should now choose a calibration source or calibrate your camera
system and load the data into the Measure Assistant (page 184) and then go back to Transform Image into

World Coordinates under Feature Processing.

Calibration Source
If you need results in world coordinates, a calibration is necessary. The Input tab lets you load calibration
data if available or opens the Calibration Assistant to calibrate live.

Choosing Calibration Files allows you to load calibration data from file which is useful if you have
already performed a calibration for your application. You can either type in the path to the parameter names
(*.cal) and the camera pose (*.dat) or use the Browse buttons next to the input boxes to load them from file.

Choosing Calibration Assistant (page 184) allows you to use calibration data from a calibration assistant
that quickly guides you through a calibration. A new assistant will be opened unless there is already one
available.

If you are just finished with your Input (page 220), continue by creating an ROI (page 220). If you have
already extracted your edges, proceed to examine your results under Edge Data.

7.4.3.3 Edge Data

Edge Data displays the measurement results. In order to see the different results for multiple ROIs, choose the
ROI you want to view the results of by clicking the name of that ROI in the Active ROI field. The results can
then be examined below.

If you want to use measurement results in other documents, you can simply mark entries, use Ctrl+C to copy those
entries to the global clipboard and subsequently paste them into any other document.

When you are satisfied with the measuring results, proceed to the Code Generation tab.

7.4.4 Code Generation

Code Generation produces the code that is necessary to perform the chosen measurement tasks within an HDe-
velop program. On the Code Generation tab you can choose between several options and change parameter
names, which has a direct effect on the code that is generated.

First, you can choose to Initialize Acquisition or Initialize Calibration automatically in your code.
Depending on whether you have previously used the Image Acquisition Assistant or the Calibration Assistant to
acquire images or get calibration data, respectively, you can now decide whether you want the generated code
from these assistants integrated in your code. Such an automatic integration of code results, for example, in the
automatic opening of the framegrabber if Image Acquisition Assistant is activated. If code for image acquisition
or calibration already exist, the checkboxes should be deactivated. If Image Acquisition Assistant or Calibration
Assistant are not in use, Initialize Acquisition and Initialize Calibration are grayed out.

Under General Options, you can decide on the Alignment Method, that is, whether an alignment is needed for
your application. To learn more about this advanced setting, please refer to the description in the section Alignment
(page 228).

You can furthermore change variable names for

• General parameters,

• ROI coordinates, and

• Measurement results.

When you are finished changing parameters, click the Insert Code button under Measuring to generate the
code.

Finally, integrate the code into your HDevelop program.

A
ss

is
ta

nt
s

224 HDevelop Assistants

7.4.4.1 Change Variable Names

If desired, you can change the default variable names for general parameters, ROI coordinates and measurement
results or replace them with your own variable names.

When you are finished changing your variable names, proceed to the Code Preview.

7.4.4.2 Code Preview

Before clicking the Insert button to include your code into the program window, you can preview the code in the
Code Preview table. You can now step through the table which consists of the columns

• Insert Operator, which shows the operator that will be inserted when you press the Insert button,

• Procedure, which shows the corresponding procedure,

• Line, referring to the line number within the code, and

• Replace Operator which shows previously generated code that will be replaced.

7.4.5 Advanced Measuring Tasks

This section deals with more complicated measuring tasks. Therefore, you might find this section useful

• if you need to handle images with more than 8 bit,

• if standard edge detection does not detect the edges in your image and you might want to learn more about
fuzzy measuring, or

• if your object can appear shifted and/or rotated in the image (page 228).

7.4.5.1 Expected Gray Value Range

If your image data exceeds 8 bits, it might be useful to choose a minimum and maximum gray value and change
the mode that handles the expected gray-value range. On the Input tab, there are three modes available that allow
you to control how much adaption of the program to gray-value ranges is necessary:

• The default mode is the adaptive mode, which checks the gray values of an image and automatically adapts
these values for each image. This mode is useful if the gray-value range is unknown or differs between
images. The downside to this default setting is, that the highest value might differ from image to image
which results in the fact that also the curves in the graphs that define the edges appear shifted which can be
confusing.

• The increasing mode checks the values for the first image and keeps these values if the gray-value range
of the following images is either the same or smaller. It only corrects the values for a wider range which is
only a problem if values should be adapted for an image with data that is significantly smaller than the one
of the previous images and the values on the graph are therefore so close together that it is impossible to
distinguish the edges.

• The simplest mode is the fixed mode as it uses only the gray-value range that has been entered and does not
adapt any values. This mode is a good choice if it is known that all images have the same gray-value range
or deviations do not contain necessary information in those values that exceed the given gray-value range so
that their variation of range can be disregarded. You can check your camera to see if 10, 12 or 14 bits are
used and choose your values accordingly.

Depending on the mode you have chosen, the minimum and maximum values will differ. The gray-value range
that is chosen here directly affects the Min. Edge Amplitude as well the graphs on the Fuzzy tab.

The Reset button allows you to set the values back to their default.

If you are not finished with your Input (page 220) yet, proceed to either add calibration images or perform a
calibration, respectively (page 223), if you want to transform your results in to world coordinates, or continue to
create an ROI (page 220) and then step to the next tab to extract edges (page 221).

7.4.5 Advanced Measuring Tasks 225

7.4.5.2 Fuzzy Measuring

So far, an edge amplitude was used for choosing edges. This is, however, sometimes not sufficient. When, for
example, reflections are part of the image, it might be necessary to further specify the features of the edges that
should be detected. Such features, like position, contrast, pair width or mean gray value can be selected and graded
by using fuzzy measuring.

Fuzzy measuring is based on fuzzy logic and allows a more specific determination of edge selection by assigning
a certain score to each edge that determines whether this edge is a member of a particular fuzzy set. For most
applications, however, it is, not necessary to use fuzzy measuring because the general edge detection functions are
sufficient to detect the right edges. If you want to learn more about fuzzy measuring, please refer to the Solution
Guide III on 1D Measuring. All different fuzzy features are explained in the section “Features that Can Be Used
to Control the Selection of Edges and Edge Pairs”.

In order to use the fuzzy measuring function of the Measure Assistant, you first have to enable it by activating the
Use Fuzzy Measure (Advanced) checkbox on top of the Fuzzy tab.

You can then proceed to select the following fuzzy membership criteria:

These options apply to both edges and edge pairs:

• Fuzzy Contrast, evaluates the amplitude of the edges and

• Fuzzy Edge Position, lets you choose “good” positions.

When working with edge pairs, additionally the following criteria can be activated:

• Fuzzy Pair Center Position chooses edge pairs with a center of a certain position,

• Fuzzy Pair Width chooses pairs of a certain width,

• Fuzzy Pair Gray Mean (page 227), selects pairs of a certain mean gray value.

Fuzzy Threshold and Reference Pair Width are two general settings that can be specified and will then be
applied for all activated criteria. Both settings are grayed out until at least one criterion is activated.

The Fuzzy Threshold is a value between 0.1 and 1 that selects the minimum fuzzy score. Each active fuzzy set,
the values added to a fuzzy membership criterion after enabling it, will be evaluated. The final Fuzzy Score is
the geometric mean of the individual scores.

Reference Pair Width helps you to adapt your values to changes in the setup. More information on how to use
Reference Pair Width and the Normalize function can be found in the section “Advanced Fuzzy Features”
(page 227).

How to specify the values that are to be evaluated as “good” by fuzzy measuring is described in more detail below.

Specify Good Values
Fuzzy measuring works with “good values”. To determine whether a value is “good”, all edges receive
a score which is a number between 0 and 1, depending on your chosen tolerance. There are different
possibilities how you can specify those values that lead to the score which can be viewed on the Results

tab (page 222):

• Click into the Values list and type in the values that you want as “good values”.

• Another solution is to use the Add Current button and add values corresponding to the currently
extracted edges. You can then inspect and, if necessary, edit each single value simply by clicking it
and modifying the number.

For example if you want to measure the distance between wires but due to reflection you get one wrong edge
pair you can use Fuzzy Pair Width to specify the pair width. Enter the wire’s width into the Values list
to detect the right edge. Alternatively, you can load the current values into the list and delete the wrong one.

Whatever solution you choose to obtain your values, you can always delete values by clicking them in the
Values list and then using the Remove button. If you want to start over, click the Remove All button to
delete all values.

It is also important that you choose the tolerance which defines how far from your chosen good value an
edge can be to be still classified as “good”.

A
ss

is
ta

nt
s

226 HDevelop Assistants

In the graph beneath Tolerance, you can see the values corresponding to all extracted edges. These are
displayed as little crosses and the curve that was defined by your good values and the allowed tolerance is
displayed as well.

When you have determined all relevant edges, continue to the Results tab (page 222).

Fuzzy Contrast
Enable Fuzzy Contrast to choose edges with specific amplitudes. Then specify your “good” values as
described in the section “Specify Good Values” (page 225).

Whenall relevant edges have been found, continue to the Results tab (page 222).

Fuzzy Edge Position
Enable Fuzzy Edge Position to choose edges of a certain position. Under subtype, you can determine
the kind of edge position that is relevant for your application. You have the choice between:

• position which lets you define the position of your edges with the starting point of the ROI set to 0,

• position_center which lets you define the position of your edges with the center of the ROI set to
0,

• position_end enables you to choose values with the end point of the ROI set to 0,

• position_first_edge which defines the first edge as value 0, or

• position_last_edge which defines the last edge as value 0.

Please note the description about how to specify “good” values (page 225).

You can learn how to use the Normalized option in the paragraph “Advanced Fuzzy Features”.

Whenall relevant edges have been found, continue to the Results tab (page 222).

Fuzzy Pair Center Position
Enable Fuzzy Pair Center Position to choose edge pairs with a center of a certain position. Under
subtype, you can determine the kind of pair center position that is relevant for your application. You have
the choice between:

• position_pair which lets you define the position of your edge pairs with the starting point of the
ROI set to 0,

• position_pair_center which lets you define the position of your edge pairs with the center of the
ROI is set to 0,

• position_pair_end which enables you to choose values with the end point of the ROI set to 0,

• position_first_pair which defines the first edge pair as value 0, and

• position_last_pair which defines the last edge pair as value 0.

Please note the description about how to specify “good” values (page 225).

You can learn how to use the Normalized option in the paragraph “Advanced Fuzzy Features”.

Whenall relevant edges have been found, continue to the Results tab (page 222).

Fuzzy Pair Width
Fuzzy Pair Width lets you select pairs of a certain width. You can choose between the subtypes

• size which evaluates the width of the edge pairs, that is the distance between the two edges of a pair,

• size_diff which evaluates the signed difference between the reference pair width and the actual
width of the edge pairs, and

• size_abs_diff which evaluates the absolute difference between the desired reference pair width and
the actual width of the edge pairs.

7.4.5 Advanced Measuring Tasks 227

b)c)

a)

Figure 7.6: How to use fuzzy measuring to improve the edge detection in an image.

The images of a dip switch show how to use fuzzy measuring to improve edge detection. Due to surface
reflections, one of the edge pairs is not detected properly. It is, however, known that the pair width is
9. Setting Fuzzy Pair Width to 9 results in the exclusion of the wrong edge and therefore also in the
detection of all the right edge pairs.

Please note the description about how to specify “good” values (page 225).

You can learn how to use the Normalized option in the paragraph “Advanced Fuzzy Features”.

Whenall relevant edges have been found, continue to the Results tab (page 222).

Fuzzy Pair Gray Mean
Fuzzy Pair Gray Mean lets you select pairs of a certain mean gray value.

Please note the description about how to specify “good” values (page 225).

Whenall relevant edges have been found, continue to the Results tab (page 222).

Advanced Fuzzy Features
The advanced features explained below enable you to adapt your fuzzy settings more easily to a different
camera with a higher resolution, a different distance between object and camera, or in general an image that
is larger or smaller.

The Normalized option can be activated for

• Fuzzy Edge Position (page 226),

• Fuzzy Pair Center Position (page 226), and

• Fuzzy Pair Width (page 226)

which are then converted to factors and multiplied with Reference Pair Width. The translation from
regular to normalized values is automatically calculated when activating or deactivating the Normalized

button. Therefore, corresponding graphs do not change. Choose the Reference Pair Width correspond-
ing to the width of your reference pair. When changing your setup, adapt the Reference Pair Width to
your new image size, for example, if your image is now double the previous size, also double the reference
Reference Pair Width.

A
ss

is
ta

nt
s

228 HDevelop Assistants

7.4.5.3 Alignment

If the object in your image appears shifted or rotated, an alignment, which can be chosen on the Code Generation

tab under Alignment Method . Affine Transformation, is necessary. An alignment allows you to automat-
ically relocate your ROI in an image where the object occurs in a different position. Note, however, that the
Measure Assistant does not perform the alignment by itself, but only generates code to align the measurements
if a transformation matrix is available from other methods such as Template Matching. For general information,
please read the following paragraph about alignment with the Measure Assistant. For more detailed information,
please refer to the documentation on matching in the Solution Guide on Matching, Chapter 2.4 “Use the Results
of Matching”.

To perform an alignment with the Measure Assistant, please follow the steps that are described in this paragraph.
When generating code with an activated Affine Transformation option, the assistant produces code that re-
quires a transformation matrix. To find the object within the image, you can perform a matching as explained in
the Solution Guide on Matching or use the Matching Assistant to guide you through the matching task. By teach-
ing a template, the object can be found in any position and orientation. After this successful matching, the affine
transformation can be constructed with the operator vector_angle_to_rigid using the difference between the
original and new model positions. This operator produces the homogeneous transformation matrix that describes
the transformation from the old to the new position.

If the object in your image is only shifted but not rotated, the suitable Alignment Method would be Translation
Only which also needs less processing time than Affine Transformation.

No Alignment is needed if the object always appears in the same position, or the intent is to find the object
location by measuring.

You can now continue to change variable names (page 224) if necessary, or preview the generated code (page 224)
before inserting it into your HDevelop program.

7.4.6 Measure Assistant Reference

The Measure Assistant Reference provides pull-down menus, a tool bar, tabs with dialogs for most of the tasks,
and a status bar at the bottom in which messages are displayed. Please note that the status bar does not provide a
scrolling mechanism. If the displayed message is to long, move the mouse over it, so that a tool tip displaying the
full message pops up. Alternatively, if the message is only slightly larger than the status bar, you can also drag the
left or right border of the Measure Assistant window to enlarge it.

Images are displayed in the graphics window of HDevelop.

7.4.6.1 The Menu File

Load Image
You can load an image from a file by the menu item File . Load Image or via the corresponding button of
the tool bar. To acquire images from a camera, you can also use the Snap and Live buttons in the tool bar.

Load Camera Parameters
If you have saved your camera parameters before, you can load them by the menu item File . Load Camera

Parameters to use them for a calibration (page 184).

Load Assistant Settings
If you have saved the settings of a former Measure Assistant session, you can load them again by the menu
item File . Load Assistant Settings or via the corresponding button of the tool bar.

Save Current Assistant Settings
You can save the current settings of a Measure Assistant using the menu item File . Save Current

Assistant Settings or the corresponding button of the tool bar. Then you can load them again in a
later session.

7.4.6 Measure Assistant Reference 229

Close Dialog
When closing the Measure Assistant dialog with the menu item File . Close Dialog or the X in the top
right corner of the window, the current settings are stored for the duration of the current HDevelop session.
As long as you do not exit HDevelop, you can again open the Measure Assistant with the same settings.
In contrast to this, when you exit the Measure Assistant, the settings are lost also for the current HDevelop
session.

Exit Assistant
When you exit the Measure Assistant with the menu item File . Exit Assistant, the assistant’s dialog
is closed and the current settings are lost unless you have stored them via the menu item File . Save

Current Assistant Settings (page 228). If you want to close the dialog but keep its settings for the
current HDevelop session, you should use the menu item Close Dialog instead.

7.4.6.2 The Menu Measuring

Draw Line
To create a linear ROI, select the menu item Measuring . Draw Line (also accessible as tool bar button).
For more information about how to draw a linear ROI, please refer to the section “Create ROI” (page 220).
You can also check the ROI data via the tool bar button View ROI Data read more about ROI data in the
section Create ROI (page 220).

Draw Circular Arc
To create a circular ROI, select the menu item Measuring . Draw Line (also accessible as tool bar button).
For more information about how to draw a circular ROI, please refer to the section “Create ROI” (page 220).
You can also check the ROI data via the tool bar button View ROI Data read more about ROI data in the
section Create ROI (page 220).

Delete Selected ROI Item
You can delete an ROI item via the menu item Measuring . Delete Selected ROI Item or via the
corresponding button of the tool bar.

Load ROI From File
Via the menu item Measure . Load ROI from File, you can load a previously saved ROI from a file.

Save ROI to File
If you want to reuse an ROI, you can save it to a file via the menu item Measure . Save ROI to File.

Delete All ROIs
You can delete all ROIs via the menu item Measuring . Delete All ROIs or via the corresponding button
of the tool bar.

7.4.6.3 The Menu Code Generation

Insert the Generated Code Lines
Via the menu item Code Generation . Insert Code (also accessible as tool bar button or as button inside
the tab Code Generation), you can insert the code that is generated according to the current settings of the
Measure Assistant into the Program Window.

Release the Generated Code Lines
Via the menu item Code Generation . Release Generated Code Lines you can release the generated
and inserted code lines. After releasing the code lines, all connections between the Measure Assistant and
the Program Window of HDevelop are lost. That is, changes, for example, the deletion of code lines, can
only be applied directly in the Program Window and not from within the Measure Assistant any more.

A
ss

is
ta

nt
s

230 HDevelop Assistants

Delete the Generated Code Lines
Via the menu item Code Generation . Delete Generated Code Lines you can delete the code lines
that you have previously generated and inserted into the Program Window of HDevelop from within the
Measure Assistant. Note that this works only as long as you have not yet released the code lines.

Preview of the Generated Code Lines
Via the menu item Code Generation . Show Code Preview you can open the dialog for the Code

Preview in the tab Code Generation.

7.4.6.4 The Menu Help

Via the menu Help you can access the online documentation.

7.4.6.5 The Tab Input

The Input tab consists of the following subdivisions:

• Image Source (page 220)

• Expected Gray Value Range (page 224)

• Calibration Source (page 223)

7.4.6.6 The Tab Edges

The Edges tab includes:

• Edge Extraction (page 221)

• Edge Selection (page 222)

• Display Parameters (page 222)

7.4.6.7 The Tab Fuzzy

The Fuzzy tab includes the following subdivisions:

• General Options (page 225)

• Fuzzy Contrast (page 226)

• Fuzzy Edge Position (page 226)

• Fuzzy Pair Center Position (page 226)

• Fuzzy Pair Width (page 226)

• Fuzzy Pair Gray Mean (page 227)

7.4.6.8 The Tab Results

The Results tab consists of the following subdivisions:

• Feature Selection (page 222)

• Feature Processing (page 223)

• Edge Data (page 223)

7.5 OCR Assistant 231

7.4.6.9 The Tab Code Generation

The Code Generation tab includes the following subdivisions:

• Measuring (page 228)

• Variable Names (General) (page 224)

• Variable Names (ROI coordinates) (page 224)

• Variable Names (Measurement results) (page 224)

• Code Preview (page 224)

7.5 OCR Assistant

7.5.1 Introducing the OCR Assistant of HDevelop

The OCR Assistant of HDevelop is a front-end to HALCON’s optical character recognition. Using the OCR
Assistant you can, for example,

• easily and quickly set parameters for optical character recognition (OCR) with the Quick Setup,

• segment text by choosing parameters suitable for the characters appearance (page 234)

• choose a pretrained classifier or train your own classifier (page 236),

• choose the kind of results you need (page 240), and

• generate code for your OCR application (page 241).

Note, the assistant is currently limited to OCR presented in the Solution Guide I, chapter ’OCR’ and does not
include Deep OCR.

Using the OCR Assistant is simple: either choose the Quick Setup to load an image and perform an OCR by
setting basic parameters or use the sections Image Source (page 233) and Region of Interest (page 233)
where you can also load a sample and mark the text that should be read with a rectangle. Then improve the
segmentation (page 234) by adapting relevant parameters, choose a pretrained font or performing your own training
(page 236) and finally add the resulting code to your application (page 241).

When looking for an overview of all OCR Assistant elements, please refer to the reference (page 242). The general
process of an OCR application is visualized in figure 7.7. This figure shows how a sample is found in an image
via segmentation and can be directly classified if an OCR classifier is available. The sample is then assigned to a
certain class, a symbol. If no suitable classifier is available, samples can be added to a training file from which a
classifier can be trained that can subsequently be used to classify a sample. The symbol class is typically equivalent
to a simple character. Therefore, a sample that is assigned to a symbol class results in a certain character that is
read.

Image

Segmentation AA
Sample Symbol

Classifier
Train

Teaching

Training File

Character

Classification

Figure 7.7: Process of an OCR application.

In this online help, the following special terms are used:

A
ss

is
ta

nt
s

232 HDevelop Assistants

Optical Character Recognition (OCR) Optical Character Recognition is the technical term for reading and
identifying symbols. In HALCON, OCR is defined as the task to assign an interpretation to regions of
an image. These regions typically represent single characters and therefore we consider this as reading
single symbols.

Sample A sample is the smallest individual object that is detected during segmentation and typically represents a
simple character. It belongs to a certain class, a symbol.

Segmentation Both for the training and for the online reading process, samples must be extracted from the image.
This step is called segmentation. This means that the OCR operators like do_ocr_single_class_svm do
not search for the characters within a given region of interest, but expect a segmented region, which then
will be assigned to a symbol class with a classifier.

Training The training consists of two important steps: First, for each character a number of samples is selected
and stored in training files. In the second step, these files are input to create a new OCR classifier. HAL-
CON provides pretrained OCR classifiers, that are ready-to-use classifiers, which already solve many OCR
applications. These OCR classifiers can be found in the subdirectory ’ocr’ of the directory where you have
installed HALCON.

Font A font describes a certain typeset, that differs from other fonts by certain features of the characters. A
classifier can be trained for these special features of the font so that characters belonging to this font can be
read successfully.

OCR Classifier An OCR classifier is trained to classify a certain set of characters, defined by certain characteris-
tics (for example Pharma.omc). HALCON provides you with a set of pretrained OCR classifiers, which are
based on a large amount of training data from various application areas. These OCR classifiers for fonts al-
low you to read text in documents, on pharmaceutical or industrial products, dot prints, and even handwritten
numbers. Furthermore, HALCON includes pretrained OCR classifiers for fonts like OCR-A and OCR-B.
You can also use your own classifiers and train an OCR classifier with HDevelop.

Symbol A symbol is a class one or more samples are assigned to with the help of an OCR classifier.

Character A character can be a single letter, number or special sign, like a hyphen. It belongs to a certain Font.

7.5.2 Setup

The OCR Assistant allows you to quickly and easily set up your OCR task in just a few steps.

7.5.2.1 Quick Setup

The Quick Setup is an easy way of setting up an OCR application. However, this preconfiguration of segmenta-
tion parameters is based on a basic description of the image content that does not take all factors into consideration
that may influence a segmentation. For this reason, the Quick Setup alone may not be sufficient to segment and
read characters in an image. Therefore, it is recommended and usually necessary to improve an OCR application
by adapting parameters (page 234).

To get started, it is very easy to set up an OCR task with the OCR Assistant’s Quick Setup in five steps:

1. Load a sample image by clicking the icon right beside the text or alternatively acquire a live image by
selecting the Image Acquisition Assistant (page 180) under Image Source on the same tab.

2. Mark the position of the text to be read using a rectangle. The purpose of this step is to indicate the text
geometry (like size and rotation). Use an axis-aligned rectangle for text in horizontal or vertical direction
and a rotated rectangle for rotated text. Alternatively, set the rectangle via the Region of Interest dialog
on the same tab. Allow for a small border. Note that if you are using the Quick Setup the rectangle
must enclose the characters that should be read as precisely as possible and it has to include at least three
characters.

3. Enter the text that you expect to be read in the text field. Remember to enter the text exactly as it is in the
sample, including all separators, line breaks and correct capitalization. If the text contains large gaps these
should be mimicked for a better recognition.

7.5.2 Setup 233

4. Describe some basic properties of the text. These properties are essential for a successful segmentation
with a minimum number of parameter adaptations. Without this information, the samples in the image may
not be segmented at all (for example, for characters that are printed bright on dark background, the image
has to be inverted internally). Check if characters are bright on dark background, composed of individual
dots or if the text is structured, that is if letters, digits or separators appear at fixed positions. Furthermore,
check whether the background is textured, noisy or cluttered.

5. Check if all information that was required so far is filled in correctly according to the features of the sample
image and then click the Apply Quick Setup button when finished.

If the Quick Setup was successful, the found characters are read and the Results tab (page 240) is automatically
opened. Otherwise, the segmentation tab opens and allows you to adapt parameters while simultaneously observing
the segmentation results.

7.5.2.2 Image Source

The Image Source dialog on the Setup tab lets you choose images from different sources:

• If your image has already been opened in the Graphics Window, you can activate Graphics Window to
continue working with the currently displayed image.

• You can load an image file by activating Image File or choosing Load Image from the menu File and
the toolbar, respectively, and either typing in the image path or using the Browse button on the right to select
an image from a file.

• Another option is to activate the radio button for the Image Acquisition Assistant (page 180). Being con-
nected to this assistant, you can acquire the image you want to use for OCR and you can even choose to
work with a Live image. The same operations can be performed by clicking the Snap or Live symbols in
the toolbar.

Note that the OCR works on a single channel image. For color RGB images, the red channel will be used. A color
transformation can be performed with the operator trans_from_rgb later in the generated code.

When you have loaded your image, you can continue to create an ROI.

7.5.2.3 Region of Interest

1. Create a ROI by using the buttons Draw Axis-aligned Rectangle or Draw Rotated Rectangle in the
tool bar or in the drop-down menu OCR. You can also choose a shape within the Region of Interest

section of the Setup tab to create a ROI. The shape of the ROI should be chosen according to the shape of
the object to be inspected.

2. After having chosen the ROI shape, you “draw” the ROI in the Graphics Window by keeping the left mouse
button pressed. Then, modify the ROI until it has the correct shape. When you are finished, click the right
mouse button, to confirm your choice.

3. To select a rotated rectangle with a correct reading direction, check that the arrow that is displayed within
the rectangle corresponds to the reading direction of the characters.

All characters that can be read with default parameters within the ROI are displayed immediately.

Note that the ROI should be chosen such that it also contains a small border around the characters to be recognized.

If you have previously prepared and saved an ROI, you can reuse it by selecting Load ROI from the OCR menu.

In order to delete one or more ROIs, you can either mark them and just press the delete button on your keybord or
click the buttons for Delete Selected ROI Item or Delete All ROIs on the Setup tab.

You can view and edit the ROI data, which includes all the data about the exact position of the ROI(s), using the
tool bar button View ROI Data. Editing an ROI by changing the ROI data is useful if an ROI should be modified
more precisely than is possible by drawing in the graphics window.

When you are satisfied with the shape of your ROI, proceed to adjust parameters on the Segmentation tab.

A
ss

is
ta

nt
s

234 HDevelop Assistants

7.5.3 Segmentation

This section describes how to set segmentation parameters for an OCR application. The tab Segmentation al-
lows you to adjust several kinds of parameters for optical character recognition. The success of these parameter
adaptions can be viewed immediately in the image after the Setup (page 232) has been completed, if at least one
image has been loaded and an ROI has been specified. Adjusting parameter settings is also recommended when
using the Quick Setup (page 232) to achieve the highest possible character recognition quality.

7.5.3.1 Symbol Appearance

Here three options specifying the way the characters are printed, can be chosen.

• Light-On-Dark whenever the gray values of the printed characters are brighter than the background gray
values,

• Dot Print if the character print is composed of single dots, for example, from matrix printers, and

• Imprinted / Embossed for print that is visible more by its relief rather than its pigment.

7.5.3.2 Symbol Size

Here three characteristics of a symbols size, the

• maximum width of a single character,

• maximum height of a single character,

• and the Stroke Width, defining the maximum thickness of the lines of a character

can be adjusted either by directly entering a number into the text field or by using the slider on the right.

Each value can be reset to the default value by clicking the button on the right side of the slider.

7.5.3.3 Symbol Shape

This dialog allows you to choose up to three options that specify the shape of a symbol.

• Interpunctuation for a text containing punctuation like, for example, comma or period,

• Separators for a text containing separators such as hyphens or slashes, and

• ALL UPPER CASE for a text containing numbers and upper case letters only.

7.5.3.4 Symbol Fragmentation

Adjustments in this dialog help distinguish clutter from character fragments.

Set the Min. Fragment Size to define the minimum size of a connected structure that is not regarded as clutter
either by entering a value in the text field or using the slider on the right. This value can be reset to the default
value by clicking the button on the right side of the slider.

Symbol Fragmentation also contains two checkboxes that should be deactivated if the settings are not helpful
for a special application. By default, fragments are connected to form characters. Border fragments, fragments
extending from outside into the region of interest, are eliminated.

7.5.3.5 Text Orientation

If the orientation of the text is unknown, for example when it appears in variable orientations during the application,
activate Line Orientation. Select an angle range by adjusting the minimum and maximum angle in degrees to
automatically correct for text that is rotated within a given range. Note that not only the orientation but also the
reading direction is also relevant for setting a value for Text Orientation. This is especially important for
vertical text.

If text may appear slanted, activate Symbol Slant to automatically correct for text that is printed in slant or italics.

Each value can be reset to the default value by clicking the corresponding buttons on the right side.

7.5.3 Segmentation 235

7.5.3.6 Text Layout

This dialog offers several options to make adjustments specifying a certain layout for text to be read. Those
adjustments apply to characteristics of the text lines as they appear within the image.

• Baseline Tolerance, sets the allowed amount of deviation from a perfect line, via text field or slider.

• Max. sets the Number of Lines, and therefore limit the number of text lines that will be searched for, via
text field or slider.

• Line Structure sets the maximum number of words and characters when searching for lines, for example
’3 4-5’ indicates a line consisting of three letters, then a space, then 4-5 letters.

• Activate the checkbox of Eliminate Background Lines if background lines exist, for example, in certain
forms or scanned documents.

The values of Baseline Tolerance and Max. Number of Lines can easily be reset to the default values via
the buttons on the right side of the sliders.

7.5.3.7 Inspection

The Inspection section helps you to find a solution to a segmentation problem. Therefore, the embedded window
shows only the content of the region of interest. By choosing an option from the combo box, intermediate results
for different parameters as well as filtered images or symbol candidates can be viewed. By adapting parameters
on this tab, changes in the segmentation process may be observed within this window which may be more helpful
than just viewing the final result in the Graphics Window.

The following table can help you to solve segmentation problems by adapting the correct parameters.

Intermediate
Step

Observation Possible Solution

Orientation Cor-
rection

The text appears rotated. Adapt the minimum and maximum angle for Line
Orientation in the dialog Text Orientation or
clip the ROI.

Slant Correction The text appears slanted, for example,
printed in italics.

Adapt the minimum and maximum angle for
Symbol Slant in the dialog Text Orientation.

Filtered Image The characters are hard to detect in the
filtered image.

There may be not enough contrast to segment the
characters. Adapting the Stroke Width may help
to solve this problem as well as it influences the fil-
ter size. Try to enhance the image quality.

Extracted Fore-
ground

Not all characters are detected as fore-
ground. One character is detected as
two parts of the foreground.

Adapt the parameters in the dialogs Symbol Size

and Symbol Fragmentation until they corre-
spond to the appearance of the characters. Try to
enhance the image quality if, for example, the con-
trast is low.

Best Symbol
Candidates

No symbol candidates or not all symbol
candidates are found.

Note, that it is not necessary that all symbol can-
didates are found here as only the best candidates
are displayed. Check if the parameters in the di-
alogs Symbol Appearance, Size and Shape cor-
respond to the appearance of the characters. That is
if the characters appear white on black background,
the corresponding parameter has to be set.

Line Geometry The extracted line does not match the
text orientation.

Adapt the Baseline Tolerance in the dialog text
layout and check if candidates are displayed.

A
ss

is
ta

nt
s

236 HDevelop Assistants

Symbol Results No results or incorrect results are found. Check if the parameters in the dialogs Symbol

Appearance, Size and Shape correspond to the
appearance of the characters, that is, if the char-
acters are composed of single dots (dot print), the
corresponding parameter has to be set.

Please note that if there are problems with the OCR, first of all the image quality should be checked. Only if there
is nothing to enhance about the quality and therefore the training images are representative for the images in the
application, parameters should be changed.

7.5.3.8 Reset

To simply set everything in this tab back to the default settings, which is recommended if a new OCR application
is started with the OCR Assistant, just press the Reset All button. To reset single values on this tab, use the
corresponding buttons on the right side of the selections.

7.5.4 OCR Classifier

This section deals with the classifier that is used for the OCR application and with its settings.

7.5.4.1 Select or Save an OCR Classifier

When using a previously trained classifier, you can choose between either

• a Pretrained Classifier from one of the classifiers that are available for HALCON (see Solution Guide
I, chapter ’OCR’ for a more detailed description of the available pretrained OCR classifiers) or

• a previously trained classifier from file that can be selected via the Browse button next to the combo box for
HALCON classifiers.

When deciding which pretrained classifier should be used, it may help to view details of the OCR classifier by
clicking the button with the magnifying lens located right of the selection for pretrained classifiers.

If a new classifier should be trained, a Training File has to be used as a basis for training a new classifier.
Therefore, select the radio button Training File and continue by loading a training file with the Browse button
next to the text field. To start the creation of a new training file, click the button New. After a new training file
has been created, samples can be added to the training file and then it has to be saved via the button Save before
it can be used for training. To look at a currently or previously created training file and maybe edit it, open the
Training File Browser (page 85) which provides an overview of the content of training files which can easily
be modified.

7.5.4.2 Teaching

This section allows you to ’teach’ characters which are displayed in the window right next to the text field.

Steps for teaching:

1. Use the text field to enter characters that correspond to the segmented characters in the image. As you
enter the characters into the text field, the image of the corresponding character is displayed on the right side
of the text field. The characters are highlighted in the Graphics Window as well.

2. Click the button Add To Training Data.

3. Repeat this process for each sample image.

4. Click the button Train Now in the section Training.

7.5.4 OCR Classifier 237

5. When the classifier has been trained for the first time, results of the OCR are available in the text field at
the bottom of the Teaching dialog to assist with further teaching.

6. If the results of the OCR are correct, click the button Suggestion to quickly add the results to the text
field during further teaching.

If you want to view the results of the OCR classification, continue to the Results tab (page 240).

If you want to improve the OCR classification, you can change Basic Features that may improve a classification
and train again. You can also select a different classifier and change parameters that influence single classifiers via
the dialog Advanced Training Parameters and Features.

If you want to save data for archival purposes during training, you can activate Save Ground Truth. If activated,
each time data is added to the training file, a copy of the source image, assistant settings, and teach data will be
stored in a subdirectory next to the training file.

7.5.4.3 Training

The Training Dialog gives you the opportunity to perform a training via the button Train Now and is connected
to the more interactive Teaching dialog (page 236) above.

Other than starting the training, the status of the training can be viewed including

• the Number of Samples that were used in the selected training file,

• the name and path of the Classifier,

• and the status of the classifier, ’untrained’, ’training’, ’trained’, ’outdated’ (new training data is available that
has not been trained yet), ’read only’ (classifier has been loaded) and ’failed’ (the last training has not been
successful).

7.5.4.4 Basic Features

This dialog enables you to choose several basic features that affect the classification.

Pattern Width and Pattern Height

With the parameters Pattern Width and Pattern Height you set the fixed pattern size which is used
for classification, that is, the size to which characters are scaled. This pattern size influences the parameter
Gray Values as this, if activated, uses the interpolated gray values. Depending on how much the characters
are scaled, or if they are not scaled at all, that is, how much Pattern Width and Pattern Height differ
from the size of the character in the image, a different Interpolation method might be suitable for the
application.

Setting a bigger size generally helps to distinguish more characters. If the value is, however, chosen to big,
overspecification may be a problem. In this case the amount of time necessary for the training and the time
necessary for the recognition will also increase.

Interpolation

The parameter Interpolation lets you choose the interpolation mode, that is the adaptation of characters
in the image to the pattern size. It also influences the parameter Gray Values as this, if activated, uses the
interpolated pattern. The most suitable interpolation method largely depends on the values that were chosen
as Pattern Width and Pattern Height, as the scale factors.

Parameter Effect Usage

Constant (De-
fault)

Bilinear interpolation in an image with
a mean filter.

Recommended choice if characters are scaled
down, but not by a large amount. This interpolation
method achieves a high precision without requiring
to much processing time.

A
ss

is
ta

nt
s

238 HDevelop Assistants

Weighted Bilinear interpolation in an image with
a Gaussian filter.

Recommended choice if characters are scaled down
by a large amount and a very high precision is re-
quired. Note that this interpolation method requires
more processing time.

Bilinear Interpolation, using the values of the 4
closest pixels in diagonal direction.

Can be used if characters are not scaled very much.

Nearest Neigh-
bor

No interpolation is performed. Fast but not very precise interpolation. Should only
be used if the image is blurred.

For more information on this parameter, see also affine_trans_image.

Pattern Features Used for Classification

In this part of the dialog, three characteristics defining the classification of pattern features can be activated:

Activate

• Gray Values to use the gray values of the interpolated pattern,

• Symbol Region to use the symbol regions of the interpolated pattern, and

• Gradient to use gradient features instead of pixel patterns (8 directions sampled from a fixed 5x5
grid).

Symbol Features Used for Classification

In this part of the dialog, three characteristics defining the classification of symbol features can be activated:

Activate

• Ratio if the ratio (width to height) of a symbol should be used,

• Anisometry if the anisometry of the equivalent ellipse of the symbol shape should be used, and

• Convexity if the convexity of the symbol shape should be used.

7.5.4.5 Advanced Training Parameters and Features

This selection allows a precise specification of the classifier as well as of the classification parameters.

The following table can help you choose suitable classifier parameters.

Parameter Method Selection Explanation

Classifier Type All MLP (Multilayer Percep-
tron), SVM (Support Vector
Machine), kNN (k-Nearest
Neighbor), Box (Hyper-
boxes); (default = MLP (if
no classifier has been trained
before) or the last classifier
that has been trained)

Choose a method for the classification of the symbols.
The last classifier that has been trained is loaded auto-
matically. The settings for this classifier are preserved
even if one of the pretrained classifiers is used in be-
tween.

Preprocessing MLP,
SVM

None, Normalization, Prin-
cipal Components, Canon-
ical Variates; (default =
None)

Preprocessing can either normalize a value range of
a feature or transform the feature space to decrease
the number of dimensions. Principal Components

and Canonical Variates can be used to reduce the
amount of data without losing a large amount of infor-
mation, while additionally optimizing the separability
of the classes after the data reduction.

7.5.4 OCR Classifier 239

Components MLP,
SVM

Number of components (de-
fault = 10)

Dimension of the reduced feature space when using ap-
propriate preprocessing. For preprocessing with prin-
cipal components or canonical variates the length of
the data is determined in Components. It is ignored if
Processing was set to None or Normalization.

Hidden Units MLP Number of hidden units
(1...150, default = Auto)

Number of neurons hidden in the middle layer of the
MLP. The more input data you are using, the higher
this value should be. In many cases, very small values
of Hidden Units already lead to very good classifica-
tion results. If Hidden Units is chosen too large, the
MLP learns the training data very well, but does not re-
turn very good results for unknown data. In the ’auto’
mode, the hidden value is estimated by a heuristic al-
gorithm which is based on the number of characters. If
the number of characters is really high, the number of
hidden units might be estimated too high, which leads
to a very slow training.

Iterations MLP The maximum number of it-
erations for training a MLP
classifier (default = 200)

Select a sufficient number of iterations to create an
MLP classifier that performs well in the subsequent ap-
plication.

Weight Toler-
ance

MLP MLP training continues
while weights still change
more than this value be-
tween iterations (default =
1)

Choose a realistic value for Weight Tolerance. If
this value is chosen too small in the training, the train-
ing will take longer. If Weight Tolerance is set very
high, the training will abort quickly and the classifica-
tion results will not be very useful either.

Error Toler-
ance

MLP MLP training continues
while error still changes
more than this value be-
tween iterations (default =
0.01)

Choose a realistic value for Error Tolerance. If this
value is chosen too small in the training, the training
will take longer. If Error Tolerance is set very high,
everything is accepted which means that the results
may not be useful either.

Mode SVM One vs. All, One vs. One
(default = One vs. All)

The voting method used to combine the binary sup-
port vector machine classifiers. One vs. All creates
a classifier where each class is compared to the rest
of the training data. During testing, the class with the
largest output is chosen. One vs. One creates a bi-
nary classifier between each single class. During test-
ing a vote is cast and the class with the majority of the
votes is selected.

Specialization
(Gamma)

SVM The Gamma parameter of
the radial basis kernel func-
tion. 0.01, 0.02, 0.05, 0.1,
0.5 (default = 0.02)

It specifies the amount of influence of a support vector
upon its surroundings. A big value means a small in-
fluence of surroundings, each training vector becomes
a support vector and training/classification times grow.
A too small value leads to few support vectors.

Regularization
(Nu)

SVM Regularization constant of
an SVM (default 0.05)

The Nu parameter of the radial basis kernel function.
One typical strategy is to select a small Specialization
(Gamma) and Regularization (Nu) pair and consecu-
tively increase the values as long as the recognition rate
increases.

Number of
Trees

kNN Number of trees in a tree
structure (default = 4)

The number of trees used by the kNN classifier. If more
trees are used, the classification becomes more robust
but the runtime also increases.

Other features that can be chosen are pixel, pixel_invar, pixel_binary, gradient_8dir,

A
ss

is
ta

nt
s

240 HDevelop Assistants

projection_horizontal, projection_horizontal_invar, projection_vertical,
projection_vertical_invar, ration, anisometry, width, height, zoom_factor, foreground,
foreground_grid_9, foreground_grid_16, compactness, convexity, moments_region_2nd_invar,
moments_region_2nd_rel_invar, moments_region_3rd_invar., moments_central,
moments_gray_plane, phi, num_connect, num_holes, cooc, num_runs, and chord_histo.

For more information about the effect of these parameters, please refer to the reference documentation of
the HALCON operators create_ocr_class_mlp, create_ocr_class_svm, create_ocr_class_knn, and
create_ocr_class_box.

7.5.5 Results

The Results tab lets you select features concerning the classification results.

When you are satisfied with the results, proceed to the Code Generation tab to receive the code for your appli-
cation. Otherwise, go back to adapt your segmentation (page 234) or OCR classifier parameters (page 236).

7.5.5.1 Word Processing

To use word processing, activate Enable on the right side of this dialog. To correct the result of the OCR classifi-
cation according to certain rules, the assistants’ word processing offers two options:

• Use a Regular Expression that restricts the allowed text or

• load a Dictionary File to compare the text with allowed words (use the Browse button on the right to
load a dictionary file).

Note that, in contrast to the operators do_ocr_word_*, the entire word is used in the Regular Expression

automatically, that is the given expression is surrounded by ’ˆ...$’.

Furthermore, the maximum number of characters that will be corrected can be selected via Max. Corrections.
For up to this number of characters if the word does not match the expression one or more alternatives, like the
second best class and so on are considered, depending on the number set for Symbol Alternatives.

Note that if high numbers of Max. Corrections and Symbol Alternatives are chosen the number of possible
corrections may be very high. Therefore, if the number of characters to be read is very high, the number of allowed
corrections is internally clipped to 5, 3, or 1 if the alternatives multiplied with the number of characters are equal
or greater than 30, 60 or 90, respectively.

The necessary corrections also influence the Score (the more corrections the lower the score) of the result that can
be viewed in the Results tab.

For more information on how to use the word processing parameters, please refer to the reference documentation
of the operators do_ocr_word_*.

7.5.5.2 Feature Selection

You can select one or more of the following features, depending on whether you have enabled Word Processing

or not. The results for this feature are then displayed in the Results section.

Without word processing, you can enable

• Symbol to view the class determined for the symbol,

• Confidence to see with which confidence the class of the symbol was determined, and

• Alternatives to view which classes best match the symbol.

With word processing enabled, you can select

• Word to display the text that was read, including corrections,

• Uncorrected Word to see the text that was read without corrections, and

• Score to see how well the uncorrected text matched the expected format on a scale from 0 to 1.0 (where 0 is
failure to correct and 1 is a match without corrections).

7.5.6 Code Generation 241

7.5.5.3 Display Parameters

To adapt the visualization, several display parameters can be adjusted.

The two combo boxes Symbol Color and Text Color let you select colors for text visualization. Via Symbol

Color, a color, or color scheme that will be used to mark the extracted characters, can be selected. Text Color

on the other hand lets you choose the color of the text that is read.

Use the dialog Display Font that opens when clicking the font button to choose the font as well as further font
settings for the text that is read

Several display functions can be turned on and off. If activated,

• Symbol Regions displays symbol regions,

• Text displays the text that is read,

• Bounding Boxes displays a bounding box for each character, and

• Shadows adds shadows to the displayed read text to enhance its visibility.

7.5.5.4 Results

The Results section consists of two windows. The first one shows the active ROI and also lets you choose
between the different ROIs so you can view their results. The results of each ROI are displayed in the text field
below. Columns will be displayed according to the features chosen in Feature Selection (page 240).

7.5.6 Code Generation

Code Generation produces the code that is necessary to perform the chosen OCR tasks within an HDevelop
program. On the Code Generation tab you can choose between several options and change parameter names,
which has a direct effect on the code that is generated.

7.5.6.1 General Options

Under General Options, you can decide on the Generation Mode, on the Alignment Method and whether
code from the Image Acquisition Assistant should be integrated into the generated code.

Generation Mode lets you select the task for which the code is generated, that is

• Text Reading or

• OCR Classifier Training.

Activate Initialize Acquisition if you have previously used the Image Acquisition Assistant (page 180) to
acquire images and want to integrate the generated code from this assistant in your code. Such an automatic inte-
gration of code results, for example, in the automatic opening of the framegrabber if Image Acquisition Assistant is
activated. If code for image acquisition already exist, the checkboxes should be deactivated. If Image Acquisition
Assistant is not in use, Initialize Acquisition is grayed out.

Alignment

If the characters in your image can appear shifted or rotated, an alignment, which can be chosen on the
Code Generation tab under Alignment Method, is necessary. An alignment allows you to automatically
relocate your ROI in an image where the object occurs in a different position. Note, however, that the OCR
Assistant does not perform the alignment by itself, but only generates code to align the measurements if a
transformation matrix is available from other methods such as Template Matching. For general information,
please read the following paragraph about alignment with the OCR Assistant. For more detailed information,
please refer to the documentation on matching in the Solution Guide on Matching, Chapter 2.4 “Use the
Results of Matching”.

To perform an alignment with the OCR Assistant, please follow the description in this paragraph. When gen-
erating code with an activated Affine Transformation option, the assistant produces code that requires a

A
ss

is
ta

nt
s

242 HDevelop Assistants

transformation matrix. To find the characters within the image, you can perform a matching as explained in
the Solution Guide on Matching or use the Matching Assistant (page 202) to guide you through the matching
task and generate the alignment code. No Alignment is needed if the characters always appear in the same
position. You can now continue to change variable names if necessary, or preview the generated code before
inserting it into your HDevelop program.

7.5.6.2 Change Variable Names

If desired, you can change the default variable names or replace them with your own variable names.

7.5.6.3 Code Preview

Before clicking the Insert button to include your code into the program window, you can preview the code in the
Code Preview table. You can now step through the table which consists of the columns

• Insert Operator, which shows the operator that will be inserted when you press the Insert button,

• Procedure, which shows the corresponding procedure,

• Line, referring to the line number within the code, and

• Replace Operator, which shows previously generated code that will be replaced.

• When you are finished changing parameters, click the Insert Code button on the right side of the General
Options dialog to generate the code.

• Finally, integrate the code into your HDevelop program.

7.5.7 OCR Assistant Reference

The OCR Assistant provides pull-down menus. Tabs with the dialogs for most of the tasks that can be performed
with the Measure Assistant, and a status bar at the bottom in which messages are displayed. Please note that the
status bar does not provide a scrolling mechanism; if the displayed message is to long, move the mouse over it,
so that a tool tip displaying the full message pops up. Alternatively, if the message is only slightly larger than the
status bar, you can also drag the left or right border of the OCR Assistant window to enlarge it.

Images are displayed in the graphics window of HDevelop.

7.5.7.1 The Menu File

Load Image
You can load an image from a file by the menu item File . Load Image or via the corresponding button of
the tool bar. To acquire images from a camera, you can also use the Snap and Live buttons in the tool bar.

Load OCR Classifier
If you have a pretrained classifier you want to use, you can load this classifier by the menu item File . Load
OCR Classifier or via the corresponding button of the toolbar.

New Training File
You can create a new training file that can be used to train a classifier by the menu item File . Load OCR

Classifier or via the corresponding button of the toolbar. Alternatively, click the button New in the dialog
OCR Classifier on the OCR Classifier tab. This automatically activates the radio button Training

File which allows you to choose a file for the new training file or open the Training File Browser

(page 85) which allows you to comfortably view and edit training files.

Load Training File
If you have saved a training file of a former OCR Assistant session, you can load the training file again by
the menu item File . Load Training File or via the corresponding button of the toolbar.

7.5.7 OCR Assistant Reference 243

Save Training File
You can save a training file using the menu item File . Save Training File or the corresponding button
of the tool bar. Then you can load the training file again in a later session.

Load Assistant Settings
If you have saved the settings of a former OCR Assistant session, you can load them again by the menu item
File . Load Assistant Settings or via the corresponding button of the tool bar.

Save Current Assistant Settings
You can save the current settings of an OCR Assistant using the menu item File . Save Current

Assistant Settings or the corresponding button of the tool bar. Then you can load them again in a
later session.

Close Dialog
When closing the OCR Assistant dialog with the menu item File . Close Dialog or the X in the top right
corner of the window, the current settings are stored for the duration of the current HDevelop session. That
is, as long as you do not exit HDevelop, you can again open the OCR Assistant with the same settings. In
contrast to this, when you exit the OCR Assistant, the settings are lost also for the current HDevelop session.

Exit Assistant
When you exit the OCR Assistant with the menu item File . Exit Assistant, the assistant’s dialog is
closed and the current settings are lost unless you have stored them via the menu item File . Save Current

Assistant Settings. If you want to close the dialog but keep its settings for the current HDevelop
session, you should use the menu item Close Dialog instead.

7.5.7.2 The Menu OCR

Draw Axis-aligned or Rotated Rectangle
To create either an axis-aligned or a rotated rectangle, select the menu items OCR . Draw Axis-aligned

Rectangle or Draw Rotated Rectangle (also accessible as tool bar button), respectively. For more
information about how to draw a rectangular ROI, please refer to the section “Create ROI” (page 233). You
can also check the ROI data via the button View ROI Data in the Region Of Interest section on the
Setup (page 232) tab. Read more about ROI data in the section Create ROI (page 233).

Train Now
Train a classifier for OCR when you have loaded training data via the menu item Train Now or the corre-
sponding button on the OCR Classifier tab in the section Training.

Delete one or all ROIs
You can delete an ROI item via the menu item OCR . Delete Selected ROI Item via the corresponding
button in the Region Of Interest section on the Setup tab. Read more about ROI data in the section
Create ROI (page 233). If you want to delete all ROI items, select Delete All ROIs.

Load ROI from File
Via the menu item OCR . Load ROI from File, you can load a previously saved ROI from a file.

Save ROI to File
If you want to reuse an ROI, you can save it to a file via the menu item OCR . Save ROI to File.

7.5.7.3 The Menu Code Generation

Insert the Generated Code Lines
Via the menu item Insert Code, which is also accessible as tool bar button or as button inside the tab Code

Generation, you can insert the code that is generated according to the current settings of the OCR Assistant
into the Program Window.

A
ss

is
ta

nt
s

244 HDevelop Assistants

Release the Generated Code Lines
Via the menu item Release Generated Code Lines you can release the generated and inserted code
lines. After releasing the code lines, all connections between the OCR Assistant and the Program Window
of HDevelop are lost. That is, changes, for example, the deletion of code lines, can only be applied directly
in the Program Window and not from within the OCR Assistant any more.

Delete the Generated Code Lines
Via the menu item Code Generation . Delete Generated Code Lines you can delete the code lines
that you have previously generated and inserted (page 229) into the Program Window of HDevelop from
within the OCR Assistant. Note that this works only as long as you have not yet released the code lines.

Preview of the Generated Code Lines
Via the menu item Show Code Preview you can open the dialog for the Code Preview in the tab Code

Generation.

7.5.7.4 The Menu Help

Via the menu Help you can access the online documentation.

7.5.7.5 The Tab Setup

The Setup tab consists of the following subdivisions:

• Quick Setup (page 232)

• Image Source (page 233)

• Region of Interest (page 233)

7.5.7.6 The Tab Segmentation

The Segmentation tab includes:

• Symbol Appearance (page 234)

• Symbol Size (page 234)

• Symbol Shape (page 234)

• Text Orientation (page 234)

• Text Layout (page 235)

• Inspection (page 235)

7.5.7.7 The Tab OCR Classifier

The OCR Classifier tab includes the following subdivisions:

• OCR Classifier (page 236)

• Teaching (page 236)

• Basic Features (page 237)

• Advanced Training Parameters and Features (page 238)

7.5.7 OCR Assistant Reference 245

7.5.7.8 The Tab Results

The Results tab consists of the following subdivisions:

• Word Processing (page 240)

• Feature Selection (page 240)

• Display Parameters (page 241)

• Results (page 241)

7.5.7.9 The Tab Code Generation

The Code Generation tab includes the following subdivisions:

• General Options (page 241)

• Variable Names (page 242)

• Code Preview (page 242)

A
ss

is
ta

nt
s

246 HDevelop Assistants

HDevelop Language 247

Chapter 8

HDevelop Language

This chapter introduces the syntax and the semantics of the HDevelop language. It illustrates what can be entered
into a parameter slot of an operator or procedure call. In the simplest case this is the name of a variable, but it
might also be an arbitrary expression like sqrt(A). Besides, control structures (like loops) and the semantics of
parameter passing are described.

Note that the HALCON operators themselves are not described in this chapter. For this purpose refer to the
HALCON reference manual. All program examples used in this chapter can also be found in the directory
%HALCONEXAMPLES%\hdevelop\Manuals\HDevelop.

8.1 Basic Types of Parameters

HALCON distinguishes two kinds of data: control data (numbers, strings, or handles) and iconic data (images,
regions, etc.) By further distinguishing input from output parameters, we get four different kinds of parameters.
These four kinds always appear in the same order in the HDevelop parameter list. In the reference manual operator
signatures are visualized in the following way:

operator (iconic input : iconic output : control input : control output)

Iconic input objects are always passed first, followed by the iconic output objects. The iconic data is followed by
the control data, and again, the input parameters succeed the output parameters.

Any of the four types of parameters may be empty. For example, the signature of read_image reads

read_image (: Image : FileName :)

The operator read_image has one output parameter for iconic objects Image and one input control parameter
FileName. The parameter types are reflected when entering operators in the operator window. The actual operator
call displayed in the HDevelop program window is:

read_image (Image, 'Name')

The parameters are separated by commas. Input control parameters can either be variables, constants or expres-
sions. An expression is evaluated before it is passed to a parameter that receives the result of the evaluation. Iconic
parameters must be variables. Control output parameters must be variables, too, as they store the results of an
operator evaluation.

La
ng

ua
ge

248 HDevelop Language

8.2 Control Types and Constants

All non-iconic data is represented by so called control data (numbers, strings or handles) in HDevelop. The name
is derived from their respective functions within HALCON operators where they control the behavior of image
processing, for example, thresholds for a segmentation operator. Control parameters in HDevelop may contain
arithmetic or logical operations. A control data item can be of one of the following data types: integer, real,
string, boolean, and handle.

integer The data type integer is used under the same syntactical rules as in C. Integer numbers can be input
in the standard decimal notation, in hexadecimal by prefixing the number with 0x, and in octal by prefixing
the number with 0 (zero).

For example:

4711

-123

0xbeef (48879 in decimal notation)

073421 (30481 in decimal notation)

Data items of type integer are converted to their machine-internal representations, that is the C type long
(4 or 8 bytes).

The minimum and maximum possible values of an integer depend on whether the 64- or 32-bit version of
HALCON is used. You can use the operator tuple_number to verify that a value fits into the range of the
integer data type. For a reference, see table 8.1.

64-bit 32-bit

Minimum value −9223372036854775808 −2147483648

Maximum value 9223372036854775807 2147483647

Table 8.1: Minimum and maximum values of integer.

real The data type real is used under the same syntactical rules as in C.

For example:

73.815

0.32214

.56

-17.32e-122

32E19

Data items of type real are converted to their machine-internal representations, that is the C type double

(8 bytes).

string A string is a sequence of characters that is enclosed in single quotes ('). Special characters, like the line
feed, are represented in the C-like notation, as you can see in table 8.2, see the reference of the C language for
comparison. You can enter arbitrary characters using the format \xnn where nn is a two-digit hexadecimal
number, or using the format \0nnn where nnn is a three-digit octal number. Less digits may be used if the
string is unambiguous. For example, a line feed may be specified as \xa unless the string continues with
another hexadecimal digit (0-F).

For example: The string Sobel's edge-filter has to be specified as 'Sobel\'s edge-filter'. A Win-
dows directory path can be entered as 'C:\\Programs\\MVTec\\Halcon\\images'

boolean The constants true and false belong to the data type boolean. The value true is internally repre-
sented by the number 1 and the value false by 0. This means, that in the expression Val := true the
effective value of Val is set to 1. In general, every integer value other than 0 means true. Note that some
HALCON operators take logical values for input, for example, set_system. In this case, the HALCON
operators expect string constants like 'true' or 'false' rather than the boolean values true or false.

8.2 Control Types and Constants 249

Meaning Abbreviation Notation

line feed NL (LF) \n

horizontal tabulator HT \t

vertical tabulator VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

bell BEL \a

backslash \ \\

single quote ' \'
arbitrary character (hexadecimal) \xnn

arbitrary character (octal) \0nnn

Table 8.2: Substitutes for special characters.

handle Handles are references to complex data structures, for example, a connection to an image acquisition
device or a model for shape-based matching.

In addition to these general types, there are special constants and the type tuple, which are specific to HALCON
or HDevelop, respectively. HDevelop also supports the variable type vector, see section 8.6 on page 270.

constants For the return value (result state) of an operator, constants exist. The constants can be used together with
the operator dev_error_var and dev_set_check. These constants represent the normal return value of
an operator, so-called messages. For errors, no constants are available but there are plenty of error numbers
internally, see the Extension Package Programmer’s Manual, appendix A on page 105.

In table 8.3, all return messages can be found.

Constant Meaning Value

H_MSG_TRUE No error; for tests: true 2

H_MSG_FALSE For tests: false 3

H_MSG_VOID No result could be computed 4

H_MSG_FAIL Operator did not succeed 5

Table 8.3: Return values for operators.

Additionally, there are constants for the types of control data, see table 8.4. These can be compared to the
result of a type operation to react to different types of control data, see section 8.5.5 on page 259.

Constant Meaning Value

H_TYPE_INT integer value 1

H_TYPE_REAL real value 2

H_TYPE_STRING string value 4

H_TYPE_MIXED mixed value 8

H_TYPE_HANDLE handle value 16

H_TYPE_ANY empty tuple 31

Table 8.4: Type values for control data.

Finally, you can access minimum and maximum values of integers and floating-point numbers via the con-
stants mentioned in table 8.5.

La
ng

ua
ge

250 HDevelop Language

Constant Meaning

H_FLOAT32_EPSILON maximal relative approximation error for 32-bit floating-point numbers

H_FLOAT32_MAX largest possible 32-bit floating-point number

H_FLOAT32_MIN smallest possible 32-bit floating-point number

H_FLOAT32_MIN_POSITIVE smallest possible positive floating-point number (32-bit)

H_FLOAT64_EPSILON maximal relative approximation error for 64-bit floating-point numbers

H_FLOAT64_MAX largest possible 64-bit floating-point number

H_FLOAT64_MIN smallest possible 64-bit floating-point number

H_FLOAT64_MIN_POSITIVE smallest possible positive 64-bit floating-point number

H_FLOAT_INFINITY ∞ (for example: 1.0/0.0), shown as inf in variable window

H_FLOAT_NAN Not a Number (NaN), shown as nan in variable window

H_FLOAT_NEG_INFINITY −∞ (for example: −1.0/0.0), shown as -inf in variable window

H_INT32_MAX largest possible 32-bit integer

H_INT32_MIN smallest possible 32-bit integer

H_INT64_MAX largest possible 64-bit integer (error in 32-bit HALCON)

H_INT64_MIN smallest possible 64-bit integer (error in 32-bit HALCON)

H_INT_MAX H_INT64_MAX or H_INT32_MAX, depending on HALCON version

H_INT_MIN H_INT64_MIN or H_INT32_MIN, depending on HALCON version

Table 8.5: Numeric constants.

For further explanation of the numeric constants, see the HDevelop example program
tuple_numeric_limits.hdev. See also the description of the operator tuple_constant.

tuple The control types are only used within the generic HDevelop type tuple. A tuple of length 1 is interpreted as
an atomic value. A tuple may consist of several data items with different types. The standard representation
of a tuple is a listing of its elements included into brackets. This is illustrated in figure 8.1.

,
boolean

[]

handle

string

integer

real

Value

Value

ValueTuple constant

Figure 8.1: Syntax of tuple constants.

[] specifies the empty tuple. A tuple with just one element is to be considered as a special case, because
it can either be specified in the tuple notation or as an atomic value: [55] defines the same constant as 55.
Examples for tuples are:

[]

4711

0.815

8.3 Variables 251

'Text'
[16]

[100.0,100.0,200.0,200.0]

['FileName','Extension']
[4711,0.815,'Hugo']

8.3 Variables

The names of variables are built up by composing letters, digits, and the underscore ‘_’. The type of a variable,
iconic or control variable, depends on its position in the parameter list in which the variable identifier is used for
the first time, see also section 8.1 on page 247, and is determined during the input of the operator parameters.
Whenever a new identifier appears, a new variable with the same identifier is created. Control and iconic variables
must have different names. The value of a variable is undefined until the first assignment defines it, note that the
variable has not been instantiated yet. A read access to an undefined variable leads to a runtime error.

Instantiated variables contain tuples of values. Depending on the kind of the variable, the data items are either
iconic objects or control data. The length of the tuple is determined dynamically by the performed operation. A
variable can get new values any number of times, but once a value has been assigned the variable will always keep
being instantiated, unless you select the menu item Menu Execute . Reset Program Execution. The content
of the variable is deleted before the variable is assigned new values.

8.3.1 Variable Types

The concept of different types of variables allows a first (“coarse”) typification of variables (control or iconic data),
whereas the actual type of the data for example, real, integer, string etc., is undefined until a concrete value
is assigned to the variable. Therefore, it is possible that the data type of a new data item differs from that of the
old.

In HDevelop, the type of a variable is defined in three different ways:

• procedure parameter definitions (explicitly)

• global variable declarations (explicitly)

• usage in the code (implicitly)

The order of precedence is as follows:

1. Procedure parameter definitions

2. Global variable declarations

3. Usage in the code

In the latter case, the type of a variable is defined by those code lines, where the value of the variable is used and
where the exact type of the new value is known before run time.

Within its scope, a variable must always be properly defined. The following type definition errors are possible:

• A local variable is used, whose type has not been defined before.
→ The error ’The variable never gets initialized’ [21089] is thrown. All lines using the variable will become
invalid, and the variable will not be displayed in the variable window.

• The type of a variable is defined differently, for example, as iconic variable and later as control variable.
→ The error ’The type of the variable could not be determined (conflicting type definitions found)’ [21088]
is thrown. All lines using the variable will become invalid, and the variable will not be displayed in the
variable window.

• The type of a variable is properly defined, but used in the wrong context, for example, an iconic variable is
used as a control input parameter.
→ The error ’The type of the variable could not be determined (conflicting type definitions found)’ [21088]
is thrown. Only the affected code will become invalid.

La
ng

ua
ge

252 HDevelop Language

8.3.2 Scope of Variables (local or global)

HDevelop supports local and global variables. All variables are local by default. They exist only within their
procedure. Local variables with the same name may exist in different procedures without interfering with each
other. In contrast, global variables may be accessed in the entire program. They have to be declared explicitly
using the global statement.

When using HDevEngine, a global variable can extend beyond the scope of its program as HDevEngine manages
the variables of all loaded programs and procedures. This can be used to transfer information between procedures.
Each global variable can have only one value at a time for all procedure calls of the running HDevEngine instance.
Therefore, take care not to overwrite the value of a variable of one program with that of another.
For more information about HDevEngine, see the Programmer’s Guide, chapter 21 on page 137.

The declaration

global tuple File

declares a global control variable named File, whereas

global object Image

declares a global iconic variable Image.

The keyword def allows you to mark one declaration explicitly as the place where the variable is defined, for
example, global def object Image. This is only relevant when exporting the program to a programming
language. See the description of the operator global for more information.

Once the global variable is declared, it can be used just like a local variable inside the procedure it has been
declared in. If you want to access a global variable in a different procedure, you have to announce this by using
the same global ... call (otherwise, a local variable will be created).

main procedure:

* declare global variables

global tuple File

global object Image

...

File := 'particle'
read_image(Image, File)

process_image()

* Image has been changed by process_image()

* File remains unchanged

...

process_image procedure:

* use global variable

global object Image

...

bin_threshold(Image, Region)

File := 'fuse'
read_image(Image, File)

return()

Procedures have to explicitly announce their use of global variables, existing procedures cannot be broken by
introducing global variables in other parts of the program. By nature, the names of global variables have to be
unique in the entire HDevelop program. The variable window provides a special tab to list all global variables that
are currently declared.

8.4 Operations on Iconic Objects 253

Symbol Types

i integer

a arithmetic, that is: integer or real

b boolean

s string

v all types (atomic)

t all types (tuple)

Table 8.6: Symbols for the operation description.

8.4 Operations on Iconic Objects

Iconic objects are exclusively processed by HALCON operators. HALCON operators work on tuples of iconic
objects, which are represented by their surrogates in the HALCON data management. The results of those operators
are again tuples of iconic objects or control data elements. For a detailed description of the HALCON operators,
refer to the HALCON reference manual and the remarks in section 8.5.3 on page 256.

8.5 Expressions for Input Control Parameters

In HDevelop, the use of expressions like arithmetic operations or string operations is limited to control input
parameters; all other kinds of parameters must be assigned by variables.

8.5.1 General Features of Tuple Operations

Please note that in all following tables variables and constants have been substituted by letters which indicate
allowed data types. These letters provide information about possible limitations of the areas of definition. The
letters and their meaning are listed in table 8.6. Operations on these symbols can only be applied to parameters of
the indicated type or to expressions that return a result of the indicated type.

The symbol names i, a, b, and s can denote atomic tuples (tuples of length 1) as well as tuples with arbitrary
length.

Operations are normally described assuming atomic tuples. If the tuple contains more than one element, most
operators work as follows:

• If one of the tuples is of length 1, all elements of the other tuples are combined with that single value for the
chosen operation.

Figure 8.2: Global variables.

La
ng

ua
ge

254 HDevelop Language

Input Result

5 * 5 25

[5] * [5] 25

[1,2,3] * 2 [2,4,6]

[1,2,3] * 2.1 + 10 [12.1,14.2,16.3]

[1,2,3] * [1,2,3] [1,4,9]

[1,2,3] * [1,2] runtime error

'Text1' + 'Text2' 'Text1Text2'
17 + '3' '173'
'Text ' + 3.1 * 2 'Text 6.2'
3.1 * (2 + ' Text') runtime error

3.1 + 2 + ' Text' '5.1 Text'
3.1 + (2 + ' Text') '3.12 Text'

Table 8.7: Examples for arithmetic operations with tuples and strings.

• If both tuples have a length greater than 1, both tuples must have the same length, otherwise a runtime error
occurs. In this case, the selected operation is applied to all elements with the same index. The length of the
resulting tuples is identical to the length of the input tuples.

• If one of the tuples is of length 0 ([]), a runtime error occurs.

In table 8.7 you can find some examples for arithmetic operations with tuples. Pay special attention to the order in
which the string concatenations are performed. The basic arithmetic operations in HDevelop are +, -, *, /. Please
note that + is a dimorphic operation: If both operands are numeric, it adds numbers. If at least one of the operands
is a string, it concatenates both operands as strings.

8.5.2 Assignment

In HDevelop, an assignment is treated like an operator. To use an assignment, you can either type it directly
into the program window or use the operator assign (Input, Result). Should you choose to work with the
operator window, the operator has the following semantics: It evaluates Input (right side of assignment) and stores
it in Result (left side of assignment). However, in the program text the assignment is represented by the usual
syntax of the assignment operator: Result := Input. The following example outlines the difference between an
assignment in C syntax and its transformed version in HDevelop:

The assignment in C syntax:

u = sin(x) + cos(y);

Can be directly typed in the program window as:

u := sin(x) + cos(y)

Another possibility would be to use the assignment operator:

assign (sin(x) + cos(y), u)

If the result of the expression does not need to be stored in a variable, the expression can directly be used as input
value for any operator, or be typed into the program window. Therefore, an assignment is necessary only if the
value has to be used several times or if the variable has to be initialized, for example for a loop.

Modifying tuple elements:

Inside the program window enter:

8.5.2 Assignment 255

Result[Index] := Value

Another possibility would be to use the assignment operator assign_at:

assign_at (Index, Value, Result)

When using the operator window enter the operator assign_at and fill in the fields.

As an example:

Areas := [1,2,3]

Areas[1] := 9

sets Areas to [1,9,3].

To construct a tuple with assign_at, normally an empty tuple is used as initial value and the elements are inserted
in a loop:

Tuple := []

for i := 0 to 5 by 1

Tuple[i] := sqrt(real(i))

endfor

As you can see from the examples, the indices of a tuple start at 0.

An insertion into a tuple can generally be performed in one of the following ways:

1. In case of appending the value at the ‘back’ or at the ‘front’, the tuple concatenation operation , (comma)
can be used. Here the operator assign is used with the following parameters:

assign ([Tuple,NewVal],Tuple)

which is displayed as

Tuple := [Tuple,NewVal]

2. If the index position is somewhere in between, the operator tuple_insert has to be used.

To insert the tuple [11,12,13] into the tuple [1,2,3] at position 1, use

tuple_insert ([1,2,3], 1, [11,12,13], Result)

or as in-line operation

Result := insert([1,2,3], 1, [11,12,13])

resulting in [1,11,12,13,2,3].

In the following example, regions are dilated with a circle mask and afterwards, the areas are stored into the tuple
Areas. In this case, the operator assign_at is used.

read_image (Mreut, 'mreut')
threshold (Mreut, Region, 190, 255)

Areas := []

for Radius := 1 to 50 by 1

dilation_circle (Region, RegionDilation, Radius)

area_center (RegionDilation, Area, Row, Column)

Areas[Radius-1] := Area

endfor

La
ng

ua
ge

256 HDevelop Language

Please note that first the variable Areas has to be initialized to avoid a runtime error. In the example, Areas is
initialized with the empty tuple ([]). Instead of assign_at, the operator assign with tuple concatenation could
be used because the element is appended at the end of the tuple:

Areas := [Areas,Area]

More examples can be found in the program assign.hdev.

8.5.3 Basic Tuple Operations

A basic tuple operation may be selecting one or more values, combining tuples (concatenation), or getting the
number of elements, see table 8.8 for operations on tuples containing control data.

Operation Meaning HALCON operator

t := [t1,t2] concatenate tuples tuple_concat

i := |t| get number of elements of tuple t tuple_length

v := t1[t2] select element t2 of tuple t1 tuple_select

t := t1[t2,t3] select elements t2 and t3 of tuple t1 tuple_select

t := t[i1:i2] select from element i1 to element i2 of
tuple t

tuple_select_range

t := subset(t1,t2) select elements specified in t2 from t1 tuple_select

t := firstn(t,i) select first elements from t up to index
i

tuple_first_n

t := lastn(t,i) select elements from t from index i to
the end

tuple_last_n

t := select_mask(t1,t2) select all elements from t1 where the
corresponding mask value in t2 is
greater than 0

tuple_select_mask

t := remove(t,i) remove elements specified in i from t tuple_remove

t := insert(t1,i,t2) insert elements from t2 at position i in
t1

tuple_insert

i := find(t1,t2) get indices of all occurrences of t2

within t1 (or -1 if no match)
tuple_find

i := replace(t1,t2,t3) replace elements tuple_replace

i := find_first(t1,t2) get indices of the first occurrences of t2
within t1 (or -1 if no match)

tuple_find_first

i := find_last(t1,t2) get indices of the last occurrences of t2
within t1 (or -1 if no match)

tuple_find_last

t := uniq(t) discard all but one of successive identi-
cal elements from t

tuple_uniq

t := [i1:i2:i3] generate a sequence of values from i1

to i3 with an increment value of i2
tuple_gen_sequence

t := [i1:i2] generate a sequence of values from i1

to i2 with an increment value of one
tuple_gen_sequence

t := gen_tuple_const(i,t) generate a tuple with i values set to t tuple_gen_const

Table 8.8: Basic operations on tuples (control data) and the corresponding HALCON operators.

The concatenation accepts one or more variables or constants as input. They are all listed between the brackets,
separated by commas. The result again is a tuple. Note the following: [[t]] = [t] = t.

8.5.4 Tuple Creation 257

control iconic

[] gen_empty_obj()

[t1,t2] concat_obj(p1, p2, q)

|t| count_obj(p, num)

t[i] select_obj(p, q, i+1)

t[i1:i2] copy_obj(p, q, i1+1, i2-i1+1)

Table 8.9: Equivalent tuple operations for control and iconic data.

|t| returns the number of elements of a tuple. The indices of elements range from zero to the number of elements
minus one (|t|-1). Therefore, the selection index has to be within this range.1

Tuple := [V1,V2,V3,V4]

for i := 0 to |Tuple|-1 by 1

fwrite_string (FileHandle,Tuple[i]+'\n')
endfor

In the following examples, the variable Var contains [2,4,8,16,16,32]:

[1,Var,[64,128]] [1,2,4,8,16,16,32,64,128]

|Var| 6

Var[4] 16

Var[4,5] [16,32]

Var[2:4] [8,16,16]

subset(Var,[0,2,4]) [2,8,16]

select_mask(Var,[1,0,0,1,1,1]) [2,16,16,32]

remove(Var,[2,3]) [2,4,16,32]

find(Var,[8,16]) 2

uniq(Var) [2,4,8,16,32]

Other examples can be found in the program tuple.hdev. The HALCON operators that correspond to the basic
tuple operations are listed in table 8.8 on page 256.

Note that these direct operations cannot be used for iconic tuples. Iconic objects cannot be selected from a tuple
using [] and their number cannot be directly determined using ||. For this purpose, HALCON operators are
offered that carry out the equivalent tasks. In table 8.9 you can see tuple operations that work on control data
(and which are applied via assign or assign_at) and their counterparts that work on iconic data (and which are
independent operators). In the table, the symbol t represents a control tuple, and the symbols p and q represent
iconic tuples.

8.5.4 Tuple Creation

The simplest way to create a tuple, as mentioned in section 8.2 on page 248, is the use of constants together with
the operator assign (or in case of iconic data one of its equivalents shown in table 8.9):

assign ([],empty_tuple)

assign (4711,one_integer)

assign ([4711,0.815],two_numbers)

1In contrast, the index of objects for example, select_obj, ranges from 1 to the number of elements.

La
ng

ua
ge

258 HDevelop Language

This code is displayed as

empty_tuple := []

one_integer := 4711

two_numbers := [4711,0.815]

This is useful for constant tuples with a fixed (small) length. More general tuples can be created by successive
application of the concatenation or the operator assign_at together with variables, expressions, or constants. If
we want to generate a tuple of length 100, where each element has the value 4711, it might be done like this:

tuple := []

for i := 1 to 100 by 1

tuple := [tuple,4711]

endfor

Because this is not very convenient, a special function called gen_tuple_const is available to construct a tuple
of a given length, where each element has the same value. Using this function, the program from above is reduced
to:

tuple := gen_tuple_const(100,4711)

A fast way to create a sequence of values with a common increment is to use tuple_gen_sequence. For example,
to create a tuple containing the values 1..1000, use

tuple_gen_sequence(1,1000,1,Sequence)

An alternative syntax to the above is to write:

Sequence := [1:1:1000]

If the increment value is one (as in the above example), it is also possible to write:

Sequence := [1:1000]

If we want to construct a tuple with the same length as a given tuple there are two ways to get an easy solution.
The first one is based on gen_tuple_const:

tuple_new := gen_tuple_const(|tuple_old|,4711)

The second one is a bit tricky and uses arithmetic functions:

tuple_new := (tuple_old * 0) + 4711

Here we get first a tuple of the same length with every element set to zero. Then, we add the constant to each
element.

In the case of tuples with different values we have to use the loop version to assign the values to each position:

tuple := []

for i := 1 to 100 by 1

tuple := [tuple,i*i]

endfor

In this example, we construct a tuple with the square values of i from 12 to 1002.

8.5.5 Type Operations 259

Operation Meaning HALCON operator

b := is_handle test for handle values tuple_is_handle

b := is_int(t) test for integer values tuple_is_int

b := is_mixed(t) test for mixed values tuple_is_mixed

b := is_number(t) test for numerical values tuple_is_number

b := is_real(t) test for real values tuple_is_real

b := is_string(t) test for string values tuple_is_string

b := is_valid_handle(t) test for valid handles tuple_is_valid_handle

s := sem_type(t) get semantic type tuple_sem_type

i := type(t) get type value tuple_type

Table 8.10: Type operations.

Operation Meaning HALCON operator

t := is_handle_elem elementwise test for handle values tuple_is_handle_elem

t := is_int_elem(t) elementwise test for integer values tuple_is_int_elem

t := is_nan_elem(t) elementwise test for NaNs tuple_is_nan_elem

t := is_real_elem(t) elementwise test for real values tuple_is_real_elem

t := is_string_elem(t) elementwise test for string values tuple_is_string_elem

t := sem_type_elem(t) get semantic type elementwise tuple_sem_type_elem

t := type_elem(t) get type value elementwise tuple_type_elem

Table 8.11: Elementwise type operations.

8.5.5 Type Operations

The type operations allow you to test or query the value type of control data as shown in table 8.10. See table 8.4
on page 249 for the corresponding type constants.

There are also corresponding operations that test each element of the input tuple as shown in table 8.11.

8.5.6 Basic Arithmetic Operations

See table 8.12 for an overview of the available basic arithmetic operations.

All operations are left-associative, except the right-associative unary minus operator. The evaluation usually is done
from left to right. Parentheses can change the order of evaluation and some operators have a higher precedence
than others, see section 8.5.17.

Operation Meaning HALCON operator

a1 / a2 division tuple_div

a1 * a2 multiplication tuple_mult

i1 % i2 modulus tuple_mod

a1 + a2 addition tuple_add

a1 - a2 subtraction tuple_sub

-a negation tuple_neg

Table 8.12: Basic arithmetic operations.

La
ng

ua
ge

260 HDevelop Language

The arithmetic operations in HDevelop match the usual definitions. Expressions can have any number of paren-
theses.

The division operator (a1 / a2) can be applied to integer as well as to real. The result is of type real, if at
least one of the operands is of type real. If both operands are of type integer, the division is an integer division.
The remaining arithmetic operators (multiplication, addition, subtraction, and negation) can be applied to either
integer or real numbers. If at least one operand is of type real, the result will be a real number as well.

Examples:

Expression Result

4/3 1

4/3.0 1.3333333

(4/3) * 2.0 2.0

Table 8.13: Example Expressions.

Simple examples can be found in the program arithmetic.hdev.

8.5.7 Bit Operations

This section describes the operations for bit processing of numbers. The operands have to be integers.

Operation Meaning HALCON operator

lsh(i1,i2) left shift tuple_lsh

rsh(i1,i2) right shift tuple_rsh

i1 band i2 bitwise and tuple_band

i1 bxor i2 bitwise xor tuple_bxor

i1 bor i2 bitwise or tuple_bor

bnot i bitwise complement tuple_bnot

Table 8.14: Bit operations.

The result of lsh(i1,i2) is a bitwise left shift of i1 that is applied i2 times. If there is no overflow, this is
equivalent to a multiplication by 2i2. The result of rsh(i1,i2) is a bitwise right shift of i1 that is applied i2

times. For non-negative i1, this is equivalent to a division by 2i2. For negative i1, the result depends on the used
hardware. For lsh and rsh, the result is undefined if the second operand has a negative value or the value is larger
than 32. More examples can be found in the program bit.hdev.

8.5.8 String Operations

There are several string operations available to modify, select, and combine strings. Furthermore, some operations
allow you to convert numbers (real and integer) to strings.

$ (string conversion)

See also: tuple_string.

$ converts numbers to strings or modifies strings. The operation has two operands: The first one (left of the $) is
the number that has to be converted. The second one (right of the $) specifies the conversion. It is comparable
to the format string of the printf() function in the C programming language. This format string consists of the
following four parts

<flags><field width>.<precision><conversion>

or as a regular expression:

8.5.8 String Operations 261

Operation Meaning HALCON operator

v$s convert v using specification s tuple_string

v1 + v2 concatenate v1 and v2 tuple_add

strchr(s1,s2) search character s2 in s1 tuple_strchr

strstr(s1,s2) search substring s2 in s1 tuple_strstr

strrchr(s1,s2) search character s2 in s1 (reverse) tuple_strrchr

strrstr(s1,s2) search substring s2 in s1 (reverse) tuple_strrstr

strlen(s) length of string tuple_strlen

str_firstn(s,i) cut the first characters of s up to position
i

tuple_str_first_n

str_lastn(s,i) cut the characters of s from position i tuple_str_last_n

s{i} select character at position i; 0 <= i

<= strlen(s)-1

tuple_str_bit_select

s{i1:i2} select substring from position i1 to po-
sition i2

tuple_substr

split(s1,s2) split s1 in substrings at s2 tuple_split

join(s1,s2) join substrings in s1 via separator in s2 tuple_join

regexp_match(s1,s2) extract substrings of s1 matching the
regular expression s2

tuple_regexp_match

regexp_replace(s1,s2,s3) replace substrings of s1 matching the
regular expression s2 with s3

tuple_regexp_replace

regexp_select(s1,s2) select tuple elements from s1 matching
the regular expression s2

tuple_regexp_select

regexp_test(s1,s2) return how many tuple elements in s1

match the regular expression s2

tuple_regexp_test

s1 =~ s2 return how many tuple elements in s1

match the regular expression s2

tuple_regexp_test

Table 8.15: String operations.

[-+ #]?([0-9]+)?(\.[0-9]*)?[doxXfeEgGsb]?

which roughly translates to zero or more of the characters in the first bracket pair, followed by zero or more digits,
optionally followed by a dot, which may be followed by digits followed by a conversion character from the last
bracket pair.

Some conversion examples might show it best:

Input Output

23 $ '10.2f' ' 23.00'

23 $ '-10.2f' '23.00 '

4 $ '.7f' '4.0000000'

1234.56789 $ '+10.3f' ' +1234.568'

255 $ 'x' 'ff'

255 $ 'X' 'FF'

0xff $ '.5d' '00255'

'total' $ '10s' ' total'

'total' $ '-10s' 'total '

'total' $ '10.3' ' tot'

La
ng

ua
ge

262 HDevelop Language

flags Zero or more flags, in any order, which modify the meaning of the conversion specification. Flags may
consist of the following characters:

- The result of the conversion is left justified within the field.

+ The result of a signed conversion always begins with a sign, + or -.�� ��Space If the first character of a signed conversion is not a sign, a space character is prefixed to the result.

The value is to be converted to an “alternate form”. For d and s conversions, this flag has no effect. For
o conversion, it increases the precision to force the first digit of the result to be a zero. For x or X
conversion, a non-zero result has 0x or 0X prefixed to it. For e, E, f, g, and G conversions, the result
always contains a radix character, even if no digits follow the radix character. For g and G conversions,
trailing zeros are not removed from the result, contrary to usual behavior.

width An optional string of decimal digits to specify a minimum field width. For an output field, if the converted
value has fewer characters than the field width, it is padded on the left (or right, if the left-adjustment flag -
has been given) to the field width.

precision The precision specifies the minimum number of digits to appear for integer conversions (the field is
padded with leading zeros), the number of digits to appear after the radix character for the e and f conver-
sions, the maximum number of significant digits for the g conversion, or the maximum number of characters
to be printed from a string conversion. The precision takes the form of a period . followed by a decimal
digit string. A null digit string is treated as a zero.

conversion A conversion character indicates the type of conversion to be applied:

d, o, x, X The integer argument is printed in signed decimal (d), unsigned octal (o), or unsigned hexadecimal
notation (x and X). The x conversion uses the numbers and lower-case letters 0123456789abcdef, and
the X conversion uses the numbers and upper-case letters 0123456789ABCDEF. The precision compo-
nent of the argument specifies the minimum number of digits to appear. If the value being converted
can be represented in fewer digits than the specified minimum, it is expanded with leading zeroes. The
default precision is 1. The result of converting a zero value with a precision of 0 is no characters.

f The floating-point number argument is printed in decimal notation in the style [-]ddd.ddd, where the
number of digits after the radix character, ., is equal to the precision specification. If the precision is
omitted from the argument, six digits are output; if the precision is explicitly 0, no radix appears.

e,E The floating-point-number argument is printed in the style [-]d.ddde+dd, where there is one digit
before the radix character, and the number of digits after it is equal to the precision. When the precision
is missing, six digits are produced; if the precision is 0, no radix character appears. The E conversion
character produces a number with E introducing the exponent instead of e. The exponent always
contains at least two digits. However, if the value to be printed requires an exponent greater than two
digits, additional exponent digits are printed as necessary.

g, G The floating-point-number argument is printed in style f or e (or in style E in the case of a G conversion
character), with the precision specifying the number of significant digits. The style used depends on
the value converted; style e is used only if the exponent resulting from the conversion is less than -4
or greater than or equal to the precision. Trailing zeros are removed from the result. A radix character
appears only if it is followed by a digit.

s The argument is taken to be a string, and characters from the string are printed until the end of the string
or the number of characters indicated by the precision specification of the argument is reached. If the
precision is omitted from the argument, it is interpreted as infinite and all characters up to the end of
the string are printed.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is expanded to contain the conversion result.

Examples for the string conversion can be found in the program string.hdev.

8.5.8 String Operations 263

+ (string concatenation)

See also: tuple_add.

The string concatenation (+) can be applied in combination with strings or all numerical types; if necessary, the
operands are first transformed into strings (according to their standard representation). At least one of the operands
has to be already a string so that the operator can act as a string concatenator. In the following example, a file
name for example, 'Name5.tiff', is generated. For this purpose, two string constants ('Name' and '.tiff') and
an integer value (the loop-index i) are concatenated:

for i := 1 to 5 by 1

read_image (Image, 'Name'+i+'.tiff')
endfor

str(r)chr

See also: tuple_strchr, tuple_strrchr.

str(r)chr(s1,s2) returns the index of the first (last) occurrence of one of the character in s2 in string s1, or -1
if none of the characters occur in the string. s1 may be a single string or a tuple of strings.

str(r)str

See also: tuple_strstr, tuple_strrstr.

str(r)str(s1,s2) returns the index of the first (last) occurrence of string s2 in string s1, or -1 if s2 does not
occur in the string. s1 may be a single string or a tuple of strings.

strlen

See also: tuple_strlen.

strlen(s) returns the number of characters in s.

str_firstn

See also: tuple_str_first_n.

str_firstn(s,t) returns the characters from the beginning of string s up to position t.

str_lastn

See also: tuple_str_last_n.

str_lastn(s,t) returns the character from position t of string s to the end.

{}

See also: tuple_str_bit_select, tuple_substr.

s{i} selects a single character (specified by index position) from s. The index ranges from zero to the length of
the string minus 1. The result of the operator is a string of length one.

s{i1:i2} returns all characters from the first specified index position (i1) up to the second specified position (i2)
in s as a string. The index ranges from zero to the length of the string minus 1.

split

See also: tuple_split.

split(s1,s2) divides the string s1 into single substrings. The string is split at those positions where it contains
a character from s2. As an example, the result of

split('/usr/image:/usr/proj/image',':')

consists of the two strings

['/usr/image','/usr/proj/image']

La
ng

ua
ge

264 HDevelop Language

join

See also: tuple_join.

join(s1,s2) joins the substrings in s1. The separator in s2 is placed between the substrings. As an example, the
result of

join(['/usr/image', '/usr/proj/image'], [':', ';'])

consists of the two strings

['/usr/image:/usr/proj/image', '/usr/image;/usr/proj/image']

Regular Expressions

HDevelop provides string functions that use Perl compatible regular expressions. Detailed information about them
can be found in the Reference Manual at the descriptions of the corresponding operators, which have the same name
but start with tuple_. In particular, at the description of tuple_regexp_match you find further information about
the used syntax, a list of possible options, and a link to suitable literature about regular expressions.

regexp_match

See also: tuple_regexp_match.

regexp_match(s1,s2) searches for elements of the tuple s1 that match the regular expression s2. It returns a tu-
ple with the same size as the input tuple (exceptions exist when working with capturing groups, see the description
of tuple_regexp_match in the Reference Manual for details). The resulting tuple contains the matching results
for each tuple element of the input tuple. For a successful match the matching substring is returned. Otherwise, an
empty string is returned.

regexp_replace

See also: tuple_regexp_replace.

regexp_replace(s1,s2,s3) replaces substrings in s1 that match the regular expression s2 with the string given
in s3. By default, only the first matching substring of each element in s1 is replaced. To replace all occurrences,
the option ’replace_all’ has to be set in s2, see tuple_regexp_replace.

For example:

assign(regexp_replace(List, '\\.jpg$', '.png'), List)

substitutes file names that look like JPEG images with PNG images.

regexp_select

See also: tuple_regexp_select.

regexp_select(s1,s2) returns only the elements of the tuple s1 that match the regular expression s2. In
contrast to regexp_match, the original tuple elements instead of the matching substrings are returned. Tuple
elements that do not match the regular expression are discarded.

For example:

assign(regexp_select(List, '\\.jpg$'), Selection)

sets Selection to all the strings from List that look like file names of JPEG images. Please note that the
backslash character has to be escaped to be preserved.

8.5.9 Set Operations 265

regexp_test

See also: tuple_regexp_test.

regexp_test(s1,s2) returns the number of elements of the tuple s1 that match the regular expression s2.
Additionally, a short-hand notation of the operator is available, which is convenient in conditional expressions:

s1 =~ s2

8.5.9 Set Operations

Table 8.16 shows the provided set operations.

Operation Meaning HALCON operator

difference(t1,t2) difference set tuple_difference

intersection(t1,t2) intersection set tuple_intersection

symmdiff(t1,t2) symmetric difference set tuple_symmdiff

union(t1,t1) union set tuple_union

Table 8.16: Set operations.

8.5.10 Comparison Operations

Table 8.17 shows the provided comparison operations.

Operation Meaning HALCON operator Alternative notation

t1 < t2 less than tuple_less

t1 > t2 greater than tuple_greater

t1 <= t2 less or equal tuple_less_equal

t1 >= t2 greater of equal tuple_greater_equal

t1 == t2 equal tuple_equal t1 = t2 (legacy)

t1 != t2 not equal tuple_not_equal t1 # t2 (legacy)

Table 8.17: Comparison operations.

La
ng

ua
ge

266 HDevelop Language

1st Operand Operation 2nd Operand Result

1 == 1.0 true

[] == [] true

'' == [] false

[1,'2'] == [1,2] false

[1,2,3] == [1,2] false

[4711,'Hugo'] == [4711,'Hugo'] true

'Hugo' == 'hugo' false

2 > 1 true

2 > 1.0 true

[5,4,1] > [5,4] true

[2,1] > [2,0] true

true > false true

'Hugo' < 'hugo' true

Table 8.18: Examples for the comparison of tuples.

8.5.11 Elementwise Comparison Operations

Table 8.19 shows the provided elementwise comparison operations.

Operation Meaning HALCON operator Alternative notation

t1 [<] t2 less than tuple_less_elem

t1 [>] t2 greater than tuple_greater_elem

t1 [<=] t2 less or equal tuple_less_equal_elem

t1 [>=] t2 greater of equal tuple_greater_equal_elem

t1 [==] t2 equal tuple_equal_elem t1 [=] t2 (legacy)

t1 [!=] t2 not equal tuple_not_equal_elem t1 [#] t2 (legacy)

Table 8.19: Elementwise comparison operations.

1st Operand Operation 2nd Operand Result

[1,2,3] [<] [3,2,1] [1,0,0]

['a','b','c'] [==] 'b' [0,1,0]

['a','b','c'] [<] ['b'] [1,0,0]

Table 8.20: Examples for the elementwise comparison of tuples.

8.5.12 Boolean Operations 267

8.5.12 Boolean Operations

Table 8.21 shows the provided boolean operations.

Operation Meaning HALCON operator

l1 and l2 logical ’and’ tuple_and

l1 xor l2 logical ’xor’ tuple_xor

l1 or l2 logical ’or’ tuple_or

not l negation tuple_not

Table 8.21: Boolean operations.

8.5.13 Trigonometric Functions

Table 8.22 shows the provided trigonometric functions.

Operation Meaning HALCON Operator

sin(a) sine of a tuple_sin

cos(a) cosine of a tuple_cos

tan(a) tangent of a tuple_tan

asin(a) arc sine of a in the interval [−π/2, π/2], a ∈ [−1, 1] tuple_asin

acos(a) arc cosine a in the interval [−π/2, π/2], a ∈ [−1, 1] tuple_acos

atan(a) arc tangent a in the interval [−π/2, π/2], a ∈ [−∞,+∞] tuple_atan

atan2(a1,a2) arc tangent a1/a2 in the interval [−π, π] tuple_atan2

sinh(a) hyperbolic sine of a tuple_sinh

cosh(a) hyperbolic cosine of a tuple_cosh

tanh(a) hyperbolic tangent of a tuple_tanh

asinh(a) inverse hyperbolic sine of a tuple_asinh

acosh(a) inverse hyperbolic cosine of a tuple_acosh

atanh(a) inverse hyperbolic tangent of a tuple_atanh

Table 8.22: Trigonometric functions.

La
ng

ua
ge

268 HDevelop Language

8.5.14 Exponential Functions

Table 8.23 shows the provided exponential functions.

Operation Meaning HALCON operator

exp(a) exponential function ea tuple_exp

exp2(a) base 2 exponential function 2a tuple_exp2

exp10(a) base 10 exponential function 10a tuple_exp10

log(a) natural logarithm ln(a), a > 0 tuple_log

log2(a) base 2 logarithm, log2(a), a > 0 tuple_log2

log10(a) base 10 logarithm, log10(a), a > 0 tuple_log10

pow(a1,a2) a1a2 tuple_pow

ldexp(a1,a2) a1 · 2floor(a2) tuple_ldexp

tgamma(a) gamma function Γ(a) tuple_tgamma

lgamma(a) logarithm of the absolute value of the gamma function log(|Γ(a)|) tuple_lgamma

erf(a) error function erf(a) tuple_erf

erfc(a) complementary error function erfc(a) tuple_erfc

Table 8.23: Exponential functions.

8.5.15 Numerical Functions

Table 8.24 shows the provided numerical functions.

The following example (file name: euclid_distance.hdev) shows the use of some numerical functions:

V1 := [18.8,132.4,33,19.3]

V2 := [233.23,32.786,234.4224,63.33]

Diff := V1 - V2

Distance := sqrt(sum(Diff * Diff))

Dotvalue := sum(V1 * V2)

First, the Euclidean distance of the two vectors V1 and V2 is computed, by using the formula:

d =

√∑
i

(V 1i − V 2i)2

The difference and the multiplication (square) are successively applied to each element of both vectors. Afterwards
sum computes the sum of the squares. Then the square root of the sum is calculated. After that the dot product of
V1 and V2 is determined by the formula:

〈V 1, V 2〉 =
∑
i

(V 1i ∗ V 2i)

8.5.16 Miscellaneous Functions 269

Operation Meaning HALCON operator

min(t) minimum value of the tuple tuple_min

min2(t1,t2) elementwise minimum of two tuples tuple_min2

max(t) maximum value of the tuple tuple_max

max2(t1,t2) elementwise maximum of two tuples tuple_max2

sum(t) sum of all tuple elements or string concatenation tuple_sum

mean(a) mean value tuple_mean

deviation(a) standard deviation tuple_deviation

cumul(a) cumulative sums of a tuple tuple_cumul

median(a) median of a tuple tuple_median

select_rank(a,i) element at rank i of a tuple tuple_select_rank

sqrt(a) square root
√
a tuple_sqrt

cbrt(a) cube root 3
√
a tuple_cbrt

hypot(a,b) hypotenuse
√
a2 + b2 tuple_hypot

deg(a) convert radians to degrees tuple_deg

rad(a) convert degrees to radians tuple_rad

real(a) convert integer to real tuple_real

int(a) truncate real to integer tuple_int

round(a) convert real to integer tuple_round

abs(a) absolute value of a (integer or real) tuple_abs

fabs(a) absolute value of a (always real) tuple_fabs

ceil(a) smallest integer value not smaller than a tuple_ceil

floor(a) largest integer value not greater than a tuple_floor

fmod(a1,a2) fractional part of a1/a2, with the same sign as a1 tuple_fmod

sgn(a) elementwise sign of a tuple tuple_sgn

Table 8.24: Numerical functions.

8.5.16 Miscellaneous Functions

Table 8.25 shows the provided miscellaneous functions.

Operation Meaning HALCON operator

sort(t) sorting in increasing order tuple_sort

sort_index(t) return index instead of values tuple_sort_index

inverse(t) reverse the order of the values tuple_inverse

number(v) convert string to a number tuple_number

environment(s) value of an environment variable tuple_environment

ord(a) convert strings of length 1 into character codes (Unicode or ANSI) tuple_ord

chr(a) Inverse of ord(a) tuple_chr

ords(s) convert strings into character codes (Unicode or ANSI) tuple_ords

chrt(i) Inverse of ords(s) tuple_chrt

rand(a) create random numbers tuple_rand

Table 8.25: Miscellaneous functions.

La
ng

ua
ge

270 HDevelop Language

8.5.17 Operation Precedence

Table 8.26 shows the provided precedence of the operations for control data.

or

xor

and

bor

bxor

band

== != =~ = #

> < >= <=

[==] [!=] [=] [=] [#]

[>] [<] [>=] [<=]

+ -

* / %

- (unary minus) not

bnot

$

.

Table 8.26: Operation precedence (increasing from top to bottom).

8.6 Vectors

A vector is a container that can hold an arbitrary number of elements, all of which must have the exact same
variable type (tuple, iconic object, or vector). The variable type “vector” is specific to HDevelop. It is available in
HDevelop 12.0 or higher. Please note that programs utilizing vector variables cannot be executed in older versions
of HDevelop.

A vector of tuples or objects is called one-dimensional, a vector of vectors of tuples or objects is two-dimensional,
and so on. The type of a vector must not change within the program. Its dimension has to remain constant, and
vectors of tuples must not be assigned iconic objects or vice versa.

This is the definition of a vector in EBNF (Extended Backus-Naur Form) grammar:

vector = "{" list "}" ;

list = tuplelist | objectlist | vectorlist ;

tuplelist = tuple, {",", tuple} ;

objectlist = object, {",", object} ;

vectorlist = vector, {",", vector} ;

tuple = "[" control "]" ;

control = string | integer | real | boolean ;

Construction of Vectors

A vector is defined by providing a comma-separated list of its elements in curly brackets.

vectorT := {[1], [2], [3]} // one-dimensional vector

This is equivalent to

vectorT := {1, 2, 3} // tuples of length 1 do not require square brackets

8.6 Vectors 271

Of course, variable names or arbitrary expressions can be used instead of constants.

t1 := 1

vectorT := {t1, t1 * 2, 3}

The following example defines a vector of iconic objects.

read_image (Image, 'clip')
threshold (Image, Region, 0, 63)

connection (Region, ConnectedRegions)

vectorO := {Image, Region, ConnectedRegions}

The following example defines a two-dimensional vector variable.

vectorV := {vectorT, {[4,5,6,7], [8,9]}}

It is also possible to define vector variables using the .at() and .insert() operations.

The list of the vector’s elements may also be empty, that is, an empty vector {} is valid as in the following example:

vectorV2 := {{1,2}, {}}

Note, however, that an empty vector has no specific type. Therefore, all of the following three empty assignments
are valid:

vectorO2 := vectorO

vectorT2 := vectorT

vectorV2 := vectorV

vectorO2 := {}

vectorT2 := {}

vectorV2 := {}

Assigning an empty vector to a vector variable is equivalent to the .clear() operation. This means that the
assignment of an empty vector to a variable is not sufficient to define the variable’s type, see section 8.3.1 on page
251. Such a variable will have an undefined type (and, therefore, be invalid) unless its type is defined properly
elsewhere in the program.

Accessing and Setting Vector Elements

A single vector element is accessed using the .at() operation, the argument of which ranges from 0 to the number
of vector elements minus 1. Several .at() operations can be combined to access the subelements of multi-
dimensional vectors. It is a runtime error to access non-existing vector elements.

tuple := vectorT.at(0) // tuple := 1

region := vectorO.at(1) // region := Region

vector := vectorV.at(0) // vector := {[1,2,3]}

tuple := vectorV.at(1).at(1) // tuple := [8, 9]

The .at() operation is also used to set vector elements. Writing to a non-existing vector element is allowed. If
necessary, the vector is automatically filled with empty elements.

vectorT.at(2) := 33 // vectorT := {[1], [2], [33]}

vectorE.at(4) := 'text' // vectorE := {[], [], [], [], 'text'}

The at() operation also allows you to construct a vector dynamically in a loop:

La
ng

ua
ge

272 HDevelop Language

for i:= 0 to 5 by 1

vecT.at(i) := gen_tuple_const(i,5)

endfor

The .insert() operation specifies an index position and a value. It shifts the values from the given index to the
end by one position, and sets the value at the index to the new value.

The .remove() operation performs the opposite operation. It removes the value at the specified position and
moves all following values to the left.

vectorT.insert(1, 99) // vectorT := {[1], [99], [2], [33]}

vectorT.remove(2) // vectorT := {[1], [99], [33]}

Like with the .at() operation, the vector is automatically filled with empty elements if necessary.

vectorNew.insert(2, 3) // vectorNew := {[], [], [3]}

The .concat() operation concatenates two vectors of the same type and dimension.

vectorC := vectorT.concat(vectorNew) // vectorC := {[1], [99], [33], [], [], [3]}

Getting the Number of Vector Elements

The number of vector elements is queried using the length() operation.

i := vectorT.length() // i := 3

j := vectorV.length() // j := 2

k := vectorV.at(0).length() // k := 3

Clearing a Vector Variable

The .clear() operation removes all elements from the corresponding vector variable. Note however that the
cleared vector still keeps its variable type.

vectorT.clear()

* vectorT := vectorO // illegal: vectorT is a tuple vector

* vectorT := vectorV // illegal: vectorT is one-dimensional

Modifying Vector Operations

The vector operations .clear(), .insert(), and .remove() are special in that they modify the input vector.
Therefore, they may only be used within an independent program statement, expression, and not within expressions
for assignments or input parameters. However, it is allowed to chain more than one modifying vector operation in
an executable expression:

v := {1, 2, 3}

v.insert(1, 5).insert(2, 4).remove(0) // sets v to {5, 4, 2, 3}

Use the special operator executable_expression to enter a modifying vector operation into the operator win-
dow.

Testing Vector Variables for (In)equality

The operations == and != are used to test two vector variables for equality or inequality, respectively.

8.7 Dictionaries 273

Converting Vectors to Tuples and Vice-versa

A vector variable can be flattened to a tuple using the convenience operator convert_vector_to_tuple. It
concatenates all tuple values that are stored in the input vector and stores them in the output tuple.

convert_vector_to_tuple (vectorV, T) // T := [1, 2, 3, 4, 5, 6, 7, 8, 9]

The convenience operator convert_tuple_to_vector_1d stores the elements of the input tuple as single ele-
ments of the one-dimensional output vector.

convert_tuple_to_vector_1d (T, 1, V) // V := {[1],[2],[3],[4],[5],[6],[7],[8],[9]}

8.7 Dictionaries

A dictionary (often also called “dict”) is an associative, array-like container. Similarly to vectors, it can store an
arbitrary number of values. In contrast, the values are each associated with unique keys (integers or strings), and
each key can refer either to a tuple or to an iconic object.

For example:

create_dict (DictHandle)

* Add data.

set_dict_tuple (DictHandle, 'SingleInteger', 27)

set_dict_tuple (DictHandle, 'MixedTuple', ['The answer', 41])

set_dict_object (Image, DictHandle, 'SingleImage')
* Access by key.

get_dict_tuple (DictHandle, 'MixedTuple', Tuple)

* Update value.

RightAnswer := Tuple[1] + 1

set_dict_tuple (DictHandle, 'MixedTuple', ['The answer',RightAnswer])

Using Dictionary Init and Access Expressions

Since HALCON 21.11, you can alternatively use a “dot notation”-like syntax instead of the “operator syntax”
above. These expressions allow you to create the dictionary and assign values in one go, for example. However,
the alternative syntax does not offer additional functionality.

The init and access expressions for dictionaries come in two flavors – “dynamic” or “static syntax”. Due to the
broader scope of the dynamic syntax notation, we introduce it first:

Create dict To create a dictionary, use the dict init expression.

<DictHandle> := dict{['<key>']: <value>}

For example:

DictHandle := dict{['SingleInteger']: 27, ['MixedTuple']: ['The answer', 42]}

Read dict To look up the value associated with a key, use the dict access expression.

<DictValue> := <DictHandle>.['<key>']

Write dict To assign a value to a key, use a dict access expression. If the key is not present in the dictionary yet,
the corresponding key-value pair will be added.

<DictHandle>.['<key>'] := <NewDictValue>

The following code shows the example from above using dict expressions:

La
ng

ua
ge

274 HDevelop Language

* Add data.

DictHandle := dict{['SingleInteger']: 27, ['MixedTuple']: ['The answer', \

41]}

read_image (DictHandle.['SingleImage'], 'printer_chip/printer_chip_01')
* Access dict's tuple element.

RightAnswer := DictHandle.['MixedTuple'][1] + 1

* Update dict value.

DictHandle.['MixedTuple'] := ['The answer',RightAnswer]

Note that the dict access expression can increase the runtime when handling larger tuples, because the tuple is
copied internally. Therefore, instead of repeatedly accessing a tuple in a loop, it is more efficient to access the
tuple outside the loop and subsequently iterate over the tuple content.

Simplifying the code using static syntax

Often, you can further simplify the expressions compared to “dynamic syntax” and use “static syntax” instead. To
create a dictionary in static syntax notation, use

<DictHandle> := dict{<key>: <value>}

For example:

DictHandle := dict{SingleInteger: 27, MixedTuple: ['The answer', 42]}

The example from above now looks like this:

* Add data.

DictHandle := dict{SingleInteger: 27, MixedTuple: ['The answer', 41]}

read_image (DictHandle.SingleImage, 'printer_chip/printer_chip_01')
* Access dict's tuple element.

RightAnswer := DictHandle.MixedTuple[1] + 1

* Update dict value.

DictHandle.MixedTuple := ['The answer',RightAnswer]

Differences between dynamic and static syntax

Although each of the programs mentioned above leads to the same result, some tasks can only be achieved using
dynamic syntax: In case of static syntax, <key> is always interpreted as a string. This means that you cannot
access the value of a variable. If you want to do this, use the dynamic syntax. In addition, the reserved words as
described in section 8.8 cannot be used with the static syntax. For example, if you have a key named global, you
will have to use the dynamic syntax.

For example, see the following code:

ImagePath := 'printer_chip/printer_chip_01'
read_image (Image, ImagePath)

Params := dict{[ImagePath]: 1}

Here, ImagePath is a variable and used as the key in the dictionary assignment:
<key> = 'printer_chip/printer_chip_01').

We can then extend the example like this:

ImagePathPrefix := 'printer_chip/printer_chip_0'

for Id := 1 to 5 by 1

read_image (Image, ImagePathPrefix + Id)

Params := dict{[ImagePathPrefix + Id]: Id}

endfor

Compare this with the following code using static syntax:

8.7 Dictionaries 275

ImagePathPrefix := 'printer_chip/printer_chip_0'

for Id := 1 to 5 by 1

read_image (Image, ImagePathPrefix + Id)

Params := dict{ImagePathPrefix + Id: Id} // error!

endfor

In this case, ImagePathPrefix is interpreted as a string and the dictionary Params would contain the syntactically
wrong key 'ImagePathPrefix' + 1, while the output of read_image is not being used any further.

The following example shows another case requiring dynamic syntax:

Keys := ['a', 'b', 'c']

for i := 0 to |Keys| - 1 by 1

Val := Params.[Keys[i]]

endfor

The same could be written with a single expression. When using multiple keys in one dict access or assignment
expression, the elements to which the keys refer must all be tuples of length 1.

Keys := ['a', 'b', 'c']
Vals := Params.[Keys]

An empty list of keys yields an empty tuple.

Keys := []

* Vals will always be [] in this case.

Vals := Params.[Keys]

Assigning control values to multiple keys can be done in a single expression.

* Dict.a == 3 and Dict.b == 3 and Dict.c == 3

Dict.[['a', 'b', 'c']] := 3

* Dict.a == 1 and Dict.b == 2 and Dict.c == 3

Dict.[['a', 'b', 'c']] := [1, 2, 3]

* Dict.a == [] and Dict.b == [] and Dict.c == []

Dict.[['a', 'b', 'c']] := []

* Dict.a == [2, 4] and Dict.b == [1, 'x'] and Dict.c == [3, 7]

* Note that this broadcast assignment only works for even multiples of the number of keys.

Dict.[['a', 'b', 'c']] := [2, 4, 1, 'x', 3, 7]

Nesting dictionaries

The dict init expression allows arbitrary nesting. You can create further dictionaries within a dictionary. For
example:

NestedDict := dict{Outer: dict{Inner: [1, 'two', dict{Innermost: 33}]}}

Restrictions

Currently, the following restrictions apply in regard to dict expressions:

• Accessing a dict element from a tuple select expression.
X := [5, dict{x: 6}][1].x // doesn't work!

• In a for loop, a value of a dictionary cannot be used as index.
for MyDict.Index := 0 to 100 by 1 // doesn't work!

La
ng

ua
ge

276 HDevelop Language

• par_start cannot be used with a dictionary value.
par_start<T1>: tuple_add(2,2,Dict.Key1) // doesn't work!

• par_start cannot write the thread handle into a dictionary.
par_start<Dict.ThreadID>: tuple_add(2,2,Four) // doesn't work!

Value copy semantics

The data stored in the dictionary is a full owning copy in case of basic control values. In contrast, handles and
iconic objects are copied as a shared reference copy. In particular, note the following:

Objects The copy is a reference, as in copy_obj. In particular, changes made using the operators set_grayval
or overpaint_region affect the object stored in the dictionary as well.

Handles Storing any handle in the dictionary will copy the handle value, but not the resource behind the handle.
This is illustrated in the following example:

create_generic_shape_model (ModelID1)

set_generic_shape_model_param (ModelID1, 'min_score', 0.42)

DictHandle := dict{sbm_model_handle: ModelID1}

ModelID2 := DictHandle.sbm_model_handle

set_generic_shape_model_param (ModelID1, 'min_score', 0.73)

get_generic_shape_model_param (ModelID2, 'min_score', MinScoreModel2)

ModelID1 and ModelID2 are both handles for the same model. As a consequence, the retrieved
MinScoreModel2 is 0.73, the value set a line above and not the value set before setting the model han-
dle as dictionary entry.

8.8 Reserved Words

The identifiers listed in table 8.27 on page 278 are reserved words and their usage is strictly limited. Here are some
examples where they cannot be used:

• As variable names.
global := 55 // doesn't work!

• As key in static dictionary expressions.
X := dict{global: 55} // doesn't work!

• As thread id in par_start.
par_start<global>: tuple_div(3, 2, Out) // doesn't work!

8.9 Control Flow Operators

The operators introduced in this section execute a block of operators conditionally or repeatedly. Usually, these
operators come in pairs: One operator marks the start of the block while the other marks the end. The code lines
in-between are referred to as the body of a control flow structure.

When you enter a control flow operator to start a block, HDevelop also adds the corresponding closing operator
by default to keep the program code balanced. In addition, the IC is placed between the control flow operators.
This is fine for entering new code blocks. If you want to add control flow operators to existing code, you can also
add the operators individually. Keep in mind, however, that a single control flow operator is treated as invalid code
until its counterpart is entered as well.

In the following, <condition> is an expression that evaluates to an integer or boolean value. A condition is
false if the expression evaluates to 0 (zero). Otherwise, it is true. HDevelop provides the following operators to
control the program flow:

8.9 Control Flow Operators 277

if ... endif This control flow structure executes a block of code conditionally. The operator if takes a condition
as its input parameter. If the condition is true, the body is executed. Otherwise the execution is continued at
the operator call that follows the operator endif.

To enter both if and endif at once, select the operator if in the operator window and make sure the check
box next to the operator is ticked.

if (<condition>)

...

endif

if ... else ... endif Another simple control flow structure is the condition with alternative. If the condition is
true, the block between if and else is executed. If the condition is false, the part between else and endif

is executed.

To enter all three operators at once, select the operator ifelse in the operator window and make sure the
check box next to the operator is ticked.

if (<condition>)

...

else

...

endif

La
ng

ua
ge

278 HDevelop Language

abs acos acosh and

asin asinh assign assign_at

atan atan2 atanh band

bnot bor break bxor

case catch cbrt ceil

chr chrt comment constant

continue cos cosh cumul

default deg deviation dict

else elseif endfor endif

endswitch endswitch endtry endwhile

environment erf erfc exit

exp exp10 exp2 export_def

fabs false find floor

fmod for gen_tuple_const global

HNULL hypot H_FLOAT32_EPSILON H_FLOAT32_MAX

H_FLOAT32_MIN H_FLOAT32_MIN_POSITIVE H_FLOAT64_EPSILON H_FLOAT64_MAX

H_FLOAT64_MIN H_FLOAT64_MIN_POSITIVE H_FLOAT_INFINITY H_FLOAT_NAN

H_FLOAT_NEG_INFINITY H_INT32_MAX H_INT32_MIN H_INT64_MAX

H_INT64_MIN H_INT_MAX H_INT_MIN H_MSG_FAIL

H_MSG_FALSE H_MSG_TRUE H_MSG_VOID H_TYPE_ANY

H_TYPE_HANDLE H_TYPE_INT H_TYPE_MIXED H_TYPE_REAL

H_TYPE_STRING if ifelse insert

int inverse is_handle is_handle_elem

is_int is_int_elem is_mixed is_nan_elem

is_number is_real is_real_elem is_string

is_string_elem is_valid_handle ldexp lgamma

log log10 log2 lsh

max max2 mean median

min min2 not or

ord ords par_join par_start

pow rad rand real

regexp_match regexp_replace regexp_select regexp_test

remove repeat replace return

round rsh select_mask select_rank

sem_type sem_type_elem sgn sin

sinh sort sort_index split

sqrt stop strchr strlen

strrchr strrstr strstr subset

sum switch tan tanh

tgamma throw true try

type type_elem uniq until

while xor

Table 8.27: Reserved words.

8.9 Control Flow Operators 279

elseif This operator is similar to the else-part of the previous control flow structure. However, it allows you
to test for an additional condition. The block between elseif and endif is executed if <condition1> is
false and <condition2> is true. elseif may be followed by an arbitrary number of additional elseif
instructions. The last elseif may be followed by a single else instruction.

if (<condition1>)

...

elseif (<condition2>)

...

endif

This is syntactically equivalent and thus a shortcut for the following code block:

if (<condition1>)

...

else

if (<condition2>)

...

endif

endif

while ... endwhile This is a looping control flow structure. As long as the condition is true, the body of the
loop is executed. In order to enter the loop, the condition has to be true in the first place. The loop can be
restarted and terminated immediately with the operator continue and break..

To enter both while and endwhile at once, select the operator while in the operator window and make
sure the check box next to the operator is ticked.

while (<condition>)

...

endwhile

repeat ... until This loop is similar to the while loop with the exception that the condition is tested at the end
of the loop. Thus, the body of a repeat ... until loop is executed at least once. Also in contrast to the
while loop, the loop is repeated if the condition is false, until it is finally true.

To enter both repeat and until at once, select the operator until in the operator window and make sure
the check box next to the operator is ticked.

repeat

...

until (<condition>)

for ... endfor The for loop is controlled by a start and an end value and an increment value, step, that determines
the number of loop steps. These values may also be expressions, which are evaluated immediately before
the loop is entered. The expressions may be of type integer or of type real. If all input values are of type
integer, the loop variable will also be of type integer. In all other cases the loop variable will be of type
real.

Please note that the for loop is displayed differently in the program window than entered in the operator
window. What you enter in the operator window as for(start,end,step,index) is displayed in the
program window as:

for <index> := <start> to <end> by <step>

...

endfor

To enter both for and endfor at once, select the operator for in the operator window and make sure the
check box next to the operator is ticked.

The start value is assigned to the index variable. The loop is executed as long as the following conditions are
true: 1) The step value is positive, and the loop index is smaller than or equal to the end value. 2) The step

La
ng

ua
ge

280 HDevelop Language

value is negative, and the loop index is greater than or equal to the end value. After a loop cycle, the loop
index is incremented by the step value and the conditions are evaluated again.

Thus, after executing the following lines,

for i := 1 to 5 by 1

j := i

endfor

i is set to 6 and j is set to 5, while in

for i := 5 to 1 by -1

j := i

endfor

i is set to 0, and j is set to 1.

The loop can be restarted and terminated immediately with the operator continue and break, respectively.

If the for loop is left too early for example, if you press Stop, and set the PC) and the loop is entered again,
the expressions will be evaluated, as if the loop were entered for the first time.

In the following example the sine from 0 up to 6π is computed and printed into the graphical window (file
name: sine.hdev):

old_x := 0

old_y := 0

dev_set_color ('red')
dev_set_part(0, 0, 511, 511)

for x := 1 to 511 by 1

y := sin(x / 511.0 * 2 * 3.1416 * 3) * 255

disp_line (WindowID, -old_y+256, old_x, -y+256, x)

old_x := x

old_y := y

endfor

In this example the assumption is made that the window is of size 512×512. The drawing is always done
from the most recently evaluated point to the current point.

continue The operator continue forces the next loop cycle of a for, while, or repeat loop. The loop condition
is tested, and the loop is executed depending on the result of the test.

In the following example, a selection of RGB color images is processed. Images with channel numbers other
than three are skipped through the use of the operator continue. An alternative is to invert the condition
and put the processing instructions between if and endif. But the form with continue tends to be much
more readable when very complex processing with lots of lines of code is involved.

i := |Images|

while (i)

Image := Images[i]

count_channels (Image, Channels)

if (Channels != 3)

continue

endif

* extensive processing of color image follows

endwhile

break The operator break enables you to exit for, while, and repeat loops. The program is then continued at
the next line after the end of the loop.

A typical use of the operator break is to terminate a for loop as soon as a certain condition becomes true,
for example, as in the following example:

8.9 Control Flow Operators 281

Number := |Regions|

AllRegionsValid := 1

* check whether all regions have an area <= 30

for i := 1 to Number by 1

ObjectSelected := Regions[i]

area_center (ObjectSelected, Area, Row, Column)

if (Area > 30)

AllRegionsValid := 0

break ()

endif

endfor

In the following example, the operator break is used to terminate an (infinite) while loop as soon as one
clicks into the graphics window:

while (1)

grab_image (Image, FGHandle)

dev_error_var (Error, 1)

dev_set_check ('~give_error')
get_mposition (WindowHandle, R, C, Button)

dev_error_var (Error, 0)

dev_set_check ('give_error')
if ((Error = H_MSG_TRUE) and (Button != 0))

break ()

endif

endwhile

switch ... case ... endswitch The switch block allows you to control the program flow via a multiway branch.
The branch targets are specified with case statements followed by an integer constant. Depending on an
integer control value the program execution jumps to the matching case statements and continues to the next
break statement or the closing endswitch statement. An optional default statement can be defined as the
last jump label within a switch block. The program execution jumps to the default label if no preceding
case statement matches the control expression.

...

switch (Grade)

case 1:

Result := 'excellent'
break

case 2:

Result := 'good'
break

case 3:

Result := 'acceptable'
break

case 4:

case 5:

Result := 'unacceptable'
break

default:

Result := 'undefined'
endswitch

...

stop The operator stop stops the program after the operator is executed. The program can be continued by
pressing the Step Over or Run button.

exit The exit operator terminates the HDevelop session.

return The operator return returns from the current procedure call to the calling procedure. If return is called
in the main procedure, the PC jumps to the end of the program, and the program is finished.

La
ng

ua
ge

282 HDevelop Language

try ... catch ... endtry This control flow structure enables dynamic exception handling in HDevelop. The pro-
gram block, runtime errors, between the operators try and catch is watched for exceptions. If an exception
occurs, diagnostic data about what caused the exception is stored in an exception tuple. The exception tuple
is passed to the catch operator, and program execution continues from there. The program block between
the operators catch and endtry is intended to analyze the exception data and react to it accordingly. If no
exception occurs, this program block is never executed.

See section 8.10, and the reference manual, for example, the operator try for detailed information.

throw The operator throw allows you to generate user-defined exceptions.

8.10 Error Handling

This section describes how errors are handled in HDevelop programs. When an error occurs, the default behavior
of HDevelop is to stop the program execution and display an error message box. While this is certainly beneficial
at the time the program is developed, it is usually not desired when the program is actually deployed. A finished
program should react to errors itself. This is of particular importance if the program interacts with the user.

There are basically two approaches to error handling in HDevelop:

• tracking the return value (error code) of operator calls

• using exception handling

A major difference between these approaches is the realm of application: The first method handles errors inside
the procedure in which they occur. The latter method allows errors to work their way up in the call stack until they
are finally dealt with.

8.10.1 Tracking the Return Value of Operator Calls

The operator dev_set_check specifies if error message boxes are displayed at all.

To turn message boxes off, use

dev_set_check('~give_error')

HDevelop will then ignore any errors in the program. Consequently, the programmer has to take care of the
error handling. Every operator call provides a return value (or error code) which signals success or failure of its
execution. This error code can be accessed through a designated error variable:

dev_error_var(ErrorCode, 1)

This operator call instantiates the variable ErrorCode. It stores the error code of the last executed operator. Using
this error code, the program can depend its further flow on the success of an operation.

...

if (ErrorCode != H_MSG_TRUE)

* react to error

endif

* continue with program

...

The error message related to a given error code can be obtained with the operator get_error_text. This is useful
when reporting errors back to the user of the program.

If the error is to be handled in a calling procedure, an appropriate output control variable has to be added to the
interface of each participating procedure, or the error variable has to be defined as a global variable (see section
8.3.2).

global tuple ErrorCode

dev_error_var(ErrorCode, 1)

...

8.10.2 Exception Handling 283

8.10.2 Exception Handling

HDevelop supports dynamic exception handling, which is comparable to the exception handling in C++ and C#.

A block of program lines is watched for run-time errors. If an error occurs, an exception is raised and an associated
exception handler is called. An exception handler is just another block of program lines, which is invisible to
the program flow unless an error occurs. The exception handler may directly act on the error or it may pass the
associated information (the exception) on to a parent exception handler. This is also known as rethrowing an
exception.

In contrast to the tracking method described in the previous section, the exception handling requires HDevelop to
be set up to stop on errors. This is the default behavior. It can also be turned on explicitly:

dev_set_check('give_error')

Furthermore, HDevelop can be configured to let the user choose whether or not an exception is thrown, or to throw
exceptions automatically. This behavior is set in the preferences tab General Options . Experienced User.

An HDevelop exception is a tuple containing data related to a specific error. It always contains the error code as
the first item. The operator dev_get_exception_data provides access to the elements of an exception tuple.

HDevelop exception handling is applied in the following way:

...

try

* start block of watched program lines

...

catch(Exception)

* get error code

ErrorCode := Exception[0]

* react to error

endtry

* program continues normally

...

8.11 Parallel Execution

The HDevelop language supports the parallel execution of procedure and operator calls as subthreads of the main
thread. Once started, subthreads are identified by a thread ID which is an integer process number depending on the
operating system. The execution of subthreads is independent of the thread they have been started from. Therefore,
the exact point in time when a specific threat finishes cannot be predicted. If you want to access data returned from
a group of threads, it is required to explicitly wait for the corresponding threads to finish.

HDevelop limits the number of threads to 20 by default. This number can be modified in the preferences if required,
see “General Options . General Options” section 6.16.11 on page 120. The main reason for limiting the
number of simultaneous threads at all, is to prevent the user from inadvertently generating a huge number of
threads due to a programming error. In that case, the system load as well as the memory consumption may grow
so high that HDevelop can become unresponsive.

Please note that the thread count includes all threads that are “alive”. In particular it also includes threads that have
already finished but are still being referenced by a variable. This has to be taken into account when tweaking the
thread limit. See also section 8.11.3 on page 286 for information about the lifetime of a thread.

8.11.1 Starting a Subthread

To start a new thread, prefix the corresponding operator or procedure call with the par_start qualifier:

par_start <ThreadID> : gather_data()

...

La
ng

ua
ge

284 HDevelop Language

Figure 8.3: Operator window with parallelization options.

This call starts the hypothetical procedure gather_data() as a new subthread in the background and continues to
execute the subsequent program lines. The thread ID is returned in the variable ThreadID, which must be specified
in angle brackets. Unlike in HDevelop, in HDevEngine a given ThreadID is only valid within the procedure that
started the thread.

Note that par_start is not an actual operator but merely a qualifier that modifies the calling behavior. Therefore,
it is not possible to select par_start in the operator window.

If starting a new subthread would exceed the configured maximum number of threads, see above, an exception is
thrown.

You can also start procedure or operator calls as a subthread from the operator window, see figure 8.3. To do this,
open the section Advanced Parallelization Options at the bottom of the operator window, tick the check
box, and enter the name of the variable that will hold the thread ID. If you double-click a program containing
the par_start qualifier, the parallelization options will also be displayed in the operator window. For certain
program lines, comments, declarations, loops, or assignments, par_start is not supported and the corresponding
options will also not be available in the operator window. For a general description of the operator window, see
section 6.11 on page 90.

It is supported to start multiple threads in a loop. In that case, the thread IDs need to be collected so that all threads
can be referenced later:

ThreadIDs := []

for Index := 1 to 5 by 1

par_start <ThreadID> : gather_data()

ThreadIDs := [ThreadIDs, ThreadID]

endfor

It is often more convenient to collect the thread IDs in a vector variable (page 270):

for Index := 1 to 5 by 1

par_start <ThreadIDs.at(Index - 1)> : gather_data()

endfor

In contrast, storing thread IDs in dictionaries or messages is not supported.!
For more information about dictionaries, see section 8.7 on page 273. For more information about messages, see
the operator create_message and the technical note Parallel Programming.

Special care must be taken when the subthread returns data in an output variable. In particular, output variables
must not be accessed in other threads while the subthread is still running. Otherwise, the data is not guaranteed to
be valid.

Likewise, it must be ensured that multiple threads do not interfere with their results. Suppose the procedure
gather_data is started as multiple threads like above but returns data in an output control variable:

8.11.2 Waiting for Subthreads to Finish 285

for Index := 1 to 5 by 1

par_start <ThreadIDs.at(Index - 1)> : gather_data(Result) // BEWARE!!!

endfor

In the example, all the threads would return their result in the same variable which is certainly not what was
intended. The final value of Result would be the unpredictable return value of the thread that finishes last, and all
other results would be lost.

An easy solution to this problem is to collect the returned data in a vector variable as shown previously with the
thread IDs:

for Index := 1 to 5 by 1

par_start <ThreadIDs.at(Index - 1)> : gather_data(Result.at(Index - 1))

endfor

Here, each invocation of gather_data returns its result in a unique slot of the vector variable Result.

8.11.2 Waiting for Subthreads to Finish

Use the operator par_join to wait for the completion of a single thread or a group of threads.

As an example why this is necessary suppose we want to call a procedure that performs some magic calculation
in the background and returns a count number as a result. In the subsequent program lines we want to use that
number for further calculations.

par_start <ThreadID> : count_objects(num)

...

for i := 1 to num by 1 // BEWARE: num might be uninitialized

...

endfor

Relying on the subthread to be fast enough is most likely going to fail. Therefore, an explicit call to par_join is
required beforehand.

par_start <ThreadID> : count_objects(num)

...

par_join(ThreadID)

for i := 1 to num by 1

...

endfor

Note that in HDevelop it is not strictly required to use par_join because the main thread will always outlive the
subthreads. However, omitting it might lead to trouble if the program is going to be executed in HDevEngine,
see Programmer’s Guide, page 138 or exported to a programming language. Similarly, access to global variables
might need some additional synchronization if the program is going to be exported.

Given the example from the previous section, waiting for the finishing of all the threads that were started in a loop
is achieved using the following lines.

convert_vector_to_tuple(ThreadIDs, Threads)

par_join(Threads)

Please note that the thread IDs had been collected in a vector variable. Thus, the conversion to a tuple is necessary
for par_join to work properly.

The par_join operator blocks the further execution of the procedure it has been called from until all specified
threads have finished. In the subsequent program lines, results from the corresponding threads can then be accessed
reliably.

La
ng

ua
ge

286 HDevelop Language

8.11.3 Execution of Threads in HDevelop

In general, threads in HDevelop are only executed in parallel when the program runs continuously after pressing�� ��F5 . In all other execution modes only the selected thread is started and all other threads remain stopped unless
an explicit user interaction advances their execution. Active breakpoints, stop instructions, runtime errors or
uncaught exceptions also cause all threads to stop so their current state can be evaluated. This convention enables a
clearly defined debugging process because it eliminates uncontrollable side-effects from other threads. Any editing
action in the program window will also cause a concurrently running program to stop.

Threads cannot be “killed” externally. They can be stopped between operator calls or by aborting interruptible
operators. If any thread executes a long-running operator that cannot be interrupted at the time HDevelop tries to
stop the program execution, a corresponding message will be displayed in the status line, and the corresponding
thread will eventually stop after the operator has finished.

Selected Thread

Exactly one of the threads is the so-called selected thread; by default this corresponds to the main thread of the
program. The position of the PC, the status of the call stack, and the state of the variables in the variable window
are linked to the selected thread. The selected thread can change automatically to a thread that stops, for example,
by a breakpoint, stop instruction, an uncaught exception, or a draw operator.

How to select a specific thread see section 8.11.4. All run modes other then continuous execution apply only to the
selected thread. Program lines unrelated to the selected thread will be grayed out in the program window.

Threads and Just-In-Time Compiled Procedures

Procedures can be executed as compiled bytecode instead of being interpreted by the HDevelop interpreter. For
more information, see section 5.9 on page 48. There is one notable difference when debugging threaded HDevelop
programs with compiled procedures. If the program is running continuously and is then being stopped (either by
user action or a breakpoint/stop instruction), the current state of the compiled procedures (variables, PC) cannot be
inspected. You can still step into the procedure calls but this will cause the corresponding thread to be re-executed
which may cause unexpected side-effects. Note that this is not an issue when single-stepping into the thread calls
in the first place because in that case procedures are always executed by the HDevelop interpreter.

Thread Lifetime

A thread exists as long as it is still being referenced by a variable even if its execution has finished. This is necessary
to reference the thread in a par_join instruction, or to set back the PC of the corresponding thread for debugging.
However, the lifetime of a thread ends if the PC is manually set back to a program line before its invocation. Apart
from that the lifetime of all subthreads ends when the program is reset using

�� ��F2 . During its lifetime a thread is
listed in the Thread View / Call Stack window from where it can be selected and managed.

Finished, but still “living” threads might cause the configured thread number limit to be exceeded unintentionally
when new threads are started at a later time. Also, it can have a negative effect on the run time behavior if finished
threads are “killed” at the same time new threads are being executed. To explicitly “kill” finished threads, it is
sufficient to reset the variables that are referencing their thread IDs as in the following example.

for Index := 0 to 4 by 1

par_start <ThreadIDs.at(Index)> : gather_data()

endfor

...

convert_vector_to_tuple (ThreadIDs, Threads)

par_join (Threads)

...

ThreadIDs := {}

Threads := []

Error Handling

Each thread can specify its own error handling, for example, using dev_set_check('~give_error'). New
subthreads inherit the error handling mode from their parent thread. Exception handling using try .. catch works
only within a thread. In the main thread it is not possible to catch an exception that is thrown in a subthread.

8.11.4 Inspecting Threads 287

8.11.4 Inspecting Threads

The current execution status of the program and its threads is displayed in the combined thread view/call stack
window. Select Execute . Thread View / Call Stack or click in the tool bar (see also Thread View /

Call Stack (page 159)). The upper half of the window lists all existing threads while the lower half displays
the call stack of the selected thread. To illustrate the interaction with this window, consider the following (silly)
example.

for Index:= 1 to 5 by 1

par_start <ThreadIDs.at(Index - 1)> : wait_seconds(Index)

endfor

wait_seconds(2)

stop()

After pressing
�� ��F5 , the program will start five subthreads, and eventually reach the stop instruction, leaving some

subthreads still running while others will already have finished. The corresponding thread view is displayed in
figure 8.4. Note that the unfinished threads are in a stopped state because of another thread (in this case caused by
the stop instruction in the main thread).

Figure 8.4: Inspecting threads.

Currently selected thread

The thread view lists the properties of all threads in a table. The status icon in the first column of each thread
visualizes the current execution state. The currently selected thread is marked by the arrow in the status icon
and is also highlighted in bold text. The other five threads are the subthreads started from the main thread. To select
another thread, double-click it in the thread view. This will also update the PC, the call stack, and the variables
according to the selected thread. The active procedure of the selected thread will be displayed in the program
window.

The meaning of the columns of the thread view is as follows:

Column Description

Thread ID The unique number assigned to the thread when it is started.

State The current execution state of the thread.

Run Mode The mode that the thread was started in the last time.

Stop Mode The reason for stopping the thread.

Caller The position (procedure and line number) from where the thread was
started.

References (hidden by default) The number of references to this thread.

La
ng

ua
ge

288 HDevelop Language

Figure 8.5: Selected subthread in the program window.

Notification line

Thread view window

Switch back to main thread

Single-stepping over a program line containing a par_start will initialize the corresponding thread without ac-
tually starting it. To debug a specific thread, press

�� ��F7 when the PC is on the corresponding par_start line. This
will automatically make the new subthread the selected thread. If the PC is already past the invocation line, first
select the thread in the thread view window. This will automatically display the correct procedure in the program
window, with the PC on the first line if the thread was started by a procedure call. For threads started by an operator
call like in the example above, the PC will be located on the corresponding call, and the rest of the program will
be grayed out, see figure 8.5. The notification line in the program window shows the thread ID of the selected
subthread, and allows fast access to the thread view window . Clicking switches back to the main thread.

8.11.5 Suspending and Resuming Threads

Threads can explicitly be suspended and resumed in the thread view window. Suspending a thread only works
between operator calls. If the thread is currently running, the current operator will still be executed before the
thread is frozen.

To suspend a thread, right-click the thread entry and select Suspend Thread. Suspended threats are “frozen” in
their current state and will defer subsequent run commands until the threads are resumed again. Run commands
will change the run status of the suspended threads but the actual execution will be prevented.

To resume a suspended thread again, right-click the thread entry and select Resume Thread.

8.12 Summary of HDevelop Tuple Operations

Functionality HDevelop Operation HALCON operator

concatenation [t1,t2] tuple_concat

number of elements |t| tuple_length

select tuple elements t1[t2] tuple_select

select tuple slice t[i1:i2] tuple_select_range

select tuple elements subset(t,i) tuple_select

first elements firstn(t,i) tuple_first_n

last elements lastn(t,i) tuple_last_n

select by mask select_mask(t1,t2) tuple_select_mask

remove tuple elements remove(t,i) tuple_remove

8.12 Summary of HDevelop Tuple Operations 289

insert tuple elements insert(t1,i,t2) tuple_insert

lookup tuple values find(t1,t2) tuple_find

replace elements replace(t1,t2,t3) tuple_replace

find first occurrences find_first(t1,t2) tuple_find_first

find last occurrences find_last(t1,t2) tuple_find_last

unify tuple elements uniq(t) tuple_uniq

tuple creation [i1:i2:i3] tuple_gen_sequence

tuple creation [i1:i2] tuple_gen_sequence

tuple creation gen_tuple_const(i1,i2) tuple_gen_const

division a1 / a2 tuple_div

multiplication a1 * a2 tuple_mult

modulo a1 % a2 tuple_mod

addition a1 + a2 tuple_add

subtraction a1 - a2 tuple_sub

negation -a tuple_neg

left shift lsh(i1,i2) tuple_lsh

right shift rsh(i1,i2) tuple_rsh

bitwise and i1 band i2 tuple_band

bitwise xor i1 bxor i2 tuple_bxor

bitwise or i1 bor i2 tuple_bor

bitwise complement bnot i tuple_bnot

string conversion v$s tuple_string

string concatenation v1 + v2 tuple_add

search character strchr(s1,s2) tuple_strchr

search character (reverse) strrchr(s1,s2) tuple_strrchr

search string strstr(s1,s2) tuple_strstr

search string (reverse) strrstr(s1,s2) tuple_strrstr

length of string strlen(s) tuple_strlen

first characters str_firstn(s,i) tuple_str_first_n

last characters str_lastn(s,i) tuple_str_last_n

select character s{i} tuple_str_bit_select

select substring s{i1:i2} tuple_str_bit_select

split string split(s1,s2) tuple_split

join strings join(s1,s2) tuple_join

regular expression match regexp_match(s1,s2) tuple_regexp_match

regular expression replace regexp_replace(s1,s2,s3) tuple_regexp_replace

regular expression select regexp_select(s1,s2) tuple_regexp_select

regular expression test regexp_test(s1,s2) tuple_regexp_test

regular expression test s1 =~ s2 tuple_regexp_test

difference difference(t1,t2) tuple_difference

La
ng

ua
ge

290 HDevelop Language

intersection intersection(t1,t2) tuple_intersection

symmetric difference symmdiff(t1,t2) tuple_symmdiff

union union(t1,t2) tuple_union

less than t1 < t2 tuple_less

greater than t1 > t2 tuple_greater

less or equal t1 <= t2 tuple_less_equal

greater or equal t1 >= t2 tuple_greater_equal

equal t1 == t2 tuple_equal

equal t1 = t2 (legacy) tuple_equal

not equal t1 != t2 tuple_not_equal

not equal t1 # t2 (legacy) tuple_not_equal

less than (elementwise) t1 [<] t2 tuple_less_elem

greater than (elementwise) t1 [>] t2 tuple_greater_elem

less or equal (elementwise) t1 [<=] t2 tuple_less_equal_elem

greater or equal (elementwise) t1 [>=] t2 tuple_greater_equal_elem

equal (elementwise) t1 [==] t2 tuple_equal_elem

equal (elementwise) t1 [=] t2 (legacy) tuple_equal_elem

not equal (elementwise) t1 [!=] t2 tuple_not_equal_elem

not equal (elementwise) t1 [#] t2 (legacy) tuple_not_equal_elem

logical and l1 and l2 tuple_and

logical xor l1 xor l2 tuple_xor

logical or l1 or l2 tuple_or

negation not l tuple_not

sine sin(a) tuple_sin

cosine cos(a) tuple_cos

tangent tan(a) tuple_tan

arc sine asin(a) tuple_asin

arc cosine acos(a) tuple_acos

arc tangent atan(a) tuple_atan

arc tangent2 atan2(a1,a2) tuple_atan2

hyperbolic sine sinh(a) tuple_sinh

hyperbolic cosine cosh(a) tuple_cosh

hyperbolic tangent tanh(a) tuple_tanh

inverse hyperbolic sine asinh(a) tuple_asinh

inverse hyperbolic cosine acosh(a) tuple_acosh

inverse hyperbolic tangent atanh(a) tuple_atanh

exponential function exp(a) tuple_exp

base 2 exponential function exp2(a) tuple_exp2

base 10 exponential function exp10(a) tuple_exp10

natural logarithm log(a) tuple_log

8.12 Summary of HDevelop Tuple Operations 291

base 2 logarithm log2(a) tuple_log2

base 10 logarithm log10(a) tuple_log10

power function pow(a1,a2) tuple_pow

ldexp function ldexp(a1,a2) tuple_ldexp

gamma function tgamma(a) tuple_tgamma

logarithm of the absolute value of the gamma function lgamma(a) tuple_lgamma

error function erf(a) tuple_erf

complementary error function erfc(a) tuple_erfc

minimum min(t) tuple_min

elementwise minimum min2(t1,t2) tuple_min2

maximum max(t) tuple_max

elementwise maximum max2(t1,t2) tuple_max2

sum function sum(t) tuple_sum

mean value mean(a) tuple_mean

standard deviation deviation(a) tuple_deviation

cumulative sum cumul(a) tuple_cumul

median median(a) tuple_median

element rank select_rank(a,i) tuple_select_rank

square root sqrt(a) tuple_sqrt

cube root cbrt(a) tuple_cbrt

hypotenuse hypot(a,b) tuple_hypot

radians to degrees deg(a) tuple_deg

degrees to radians rad(a) tuple_rad

integer to real real(a) tuple_real

real to integer int(a) tuple_int

real to integer round(a) tuple_round

absolute value abs(a) tuple_abs

floating absolute value fabs(a) tuple_fabs

ceiling function ceil(a) tuple_ceil

floor function floor(a) tuple_floor

fractional part fmod(a1,a2) tuple_fmod

elementwise sign sgn(a) tuple_sgn

sort elements sort(t) tuple_sort

sort elements (returns index) sort_index(t) tuple_sort_index

reverse element order inverse(t) tuple_inverse

test for numeric value is_number(v) tuple_is_number

string to number number(v) tuple_number

environment variable environment(s) tuple_environment

convert strings of length 1 into character codes ord(a) tuple_ord

inverse of ord(a) chr(a) tuple_chr

La
ng

ua
ge

292 HDevelop Language

convert strings into character codes ords(s) tuple_ords

inverse of ords(s) chrt(i) tuple_chrt

random number rand(a) tuple_rand

test for handle values is_handle(t) tuple_is_handle

test for integer values is_int(t) tuple_is_int

test for mixed values is_mixed(t) tuple_is_mixed

test for numerical values is_number(t) tuple_is_number

test for real values is_real(t) tuple_is_real

test for string values is_string(t) tuple_is_string

test for valid handles is_valid_handle tuple_is_valid_handle

get semantic type sem_type(t) tuple_sem_type

get type value type(t) tuple_type

test for handle values (elementwise) is_handle_elem(t) tuple_is_handle_elem

test for integer values (elementwise) is_int_elem(t) tuple_is_int_elem

test for NaN values (elementwise) is_nan_elem(t) tuple_is_nan_elem

test for real values (elementwise) is_real_elem(t) tuple_is_real_elem

test for string values (elementwise) is_string_elem(t) tuple_is_string_elem

get semantic type (elementwise) sem_type_elem(t) tuple_sem_type_elem

get type value (elementwise) type_elem(t) tuple_type_elem

8.13 HDevelop Error Codes

21000 HALCON operator error

21001 User defined exception (’throw’)

21002 User defined error during execution

21003 User defined operator does not implement execution interface

21010 HALCON license error

21011 HALCON startup error

21012 HALCON operator error

21020 Format error: file is not a valid HDevelop program or procedure

21021 File is no HDevelop program or has the wrong version

21022 Protected procedure could not be decompressed

21023 Protected procedure could not be compressed and encrypted for saving

21024 Format error: file is not a valid HDevelop program

21025 Format error: file is not a valid HDevelop procedure

21026 Format error: file is not a valid HDevelop procedure library

21030 The program was modified inconsistently outside HDevelop.

21031 The program was modified outside HDevelop: inconsistent procedure lines.

21032 The program was modified outside HDevelop: unmatched control statements

21033 Renaming of procedure failed

8.13 HDevelop Error Codes 293

21034 Locked procedures are not supported for the selected action.

21034 Password protection/locked procedures

21035 Procedures with advanced language elements are not supported for the selected action.

21035 Parallel execution statements, iconic assignments, or iconic comparisons

21036 Procedures with vector variables are not supported for the selected action.

21036 Vector variables

21040 Unable to open file

21041 Unable to read from file

21042 Unable to write to file

21043 Unable to rename file

21044 Unable to open file: invalid file name

21050 For this operator the parallel execution with par_start is not supported

21051 Thread creation failed

21052 Thread creation failed: exceeded maximum number of subthreads

21060 Iconic variable is not instantiated

21061 Control variable is not instantiated (no value)

21062 Wrong number of control values

21063 Wrong value type of control parameter

21064 Wrong value of control parameter

21065 Control parameter does not contain a variable

21066 Control parameter must be a constant value

21067 Wrong number of control values in condition variable

21068 Wrong type: Condition variable must be an integer or boolean

21070 Variable names must not be empty

21071 Variable names must not start with a number

21072 Invalid variable name

21073 Invalid name for a control variable: the name is already used for an iconic variable

21074 Invalid name for an iconic variable: the name is already used for a control variable

21075 An iconic variable is used in the wrong context: a control variable or a vector is expected

21076 A control variable is used in the wrong context: an iconic variable or a vector is expected

21077 An iconic vector variable is used in the wrong context: a control variable or a single value
is expected

21078 A control vector variable is used in the wrong context: an iconic variable or a single value
is expected

21080 For loop variable must be a number

21081 Step parameter of for loop must be a number

21082 End parameter of for loop must be a number

21083 Variable names must not be a reserved expression

21084 Case label value has already appeared in switch block

21085 Default label has already appeared in switch block

La
ng

ua
ge

294 HDevelop Language

21086 The type of the variable could not be determined (no proper type definition found)

21087 The type of the variable could not be determined (conflicting type definitions found)

21088 The type of the variable could not be determined (conflicting type definitions found)

21089 The variable never gets initialized

21090 A global variable with the specified name but a different type is already defined

21091 Access to an unknown global variable

21092 Access to an invalid global variable

21093 Invalid name for a global variable: the name is already used for a procedure parameter

21100 Access to an erroneous expression

21101 Wrong index in expression list

21102 Empty expression

21103 Empty expression argument

21104 Syntax error in expression

21105 Too few function arguments in expression

21106 Too many function arguments in expression

21107 The expression has no return value

21108 The expression has the wrong type

21109 The expression has the wrong type

21110 The expression has the wrong type: iconic expression expected

21111 The expression has the wrong type: iconic expression expected

21112 The expression has the wrong type: control expression expected

21113 The expression has the wrong type: control expression expected

21114 The expression has the wrong vector dimension

21115 The expression has the wrong vector dimension

21116 Vector expression expected

21117 Vector expression expected

21118 Single or tuple value expression expected instead of a vector

21119 Single or tuple value expression expected instead of a vector

21120 Expression expected

21121 lvalue expression expected

21122 Variable expected

21123 Unary expression expected

21124 Expression list expected

21125 Function arguments in parentheses expected

21126 One function argument in parentheses expected

21127 Two function arguments in parentheses expected

21128 Three function arguments in parentheses expected

21129 Four function arguments in parentheses expected

21130 Five function arguments in parentheses expected

21131 Right parenthesis ’)’ expected

8.13 HDevelop Error Codes 295

21132 Right curly brace ’}’ expected

21133 Right square bracket ’]’ expected

21134 Unmatched right parenthesis ’)’ found

21135 Unmatched right curly brace ’}’ found

21136 Unmatched right square bracket ’]’ found

21137 Second bar ’|’ expected

21138 Function name expected before parentheses

21139 Unterminated string detected

21140 Invalid character in an expression identifier detected

21141 Parameter expression expected

21142 Parameter expression is not executable

21143 method or key expected after .

21144 Modifying vector methods are not allowed within parameters

21200 Syntax error in operator expression

21201 Identifier (operator or variable name) expected

21203 Syntax error in parameter list

21204 Parenthesis expected

21205 No parenthesis expected

21206 List of parameters in parenthesis expected

21207 Wrong number of parameters

21208 Unexpected characters at end of line

21209 Assign operator ’:=’ expected

21210 Expression after assign operator ’:=’ expected

21211 Expression in brackets ’[]’ for the assign_at index expected

21212 In for statement, after keyword ’by’ expression for parameter ’Step’ expected

21213 In for statement, after keyword ’to’ expression for parameter ’End’ expected

21214 In for statement, after assign operation (’:=’) expression for parameter ’Start’ expected

21215 In for statement, after ’for .. := .. to ..’ keyword ’by’ expected

21216 In for statement, after ’for .. := ..’ keyword ’to’ expected

21217 In for statement, assign operation ’:=’ for initializing the index variable expected

21218 After ’for’ keyword, assignment of ’Index’ parameter expected

21219 In for statement, error after ’by’ keyword in expression of parameter ’Step’

21220 In for statement, error after ’to’ keyword in expression of parameter ’End’ or the following
’by’ keyword

21221 In for statement, error after assignment operation (’:=’) in expression of parameter ’Start’
or the following ’to’ keyword

21222 In for statement, invalid variable name in parameter ’Index’ or error in the following assign-
ment operation (’:=’)

21223 for statement not complete

21224 In for statement, space after ’for’ expected

21225 In for statement, space after ’to’ expected

La
ng

ua
ge

296 HDevelop Language

21226 In for statement, space after ’by’ expected

21227 This expression cannot be used as loop index

21228 Wrong type: The switch statement requires an integer value as parameter

21229 Wrong type: The case statement requires a constant integer value as parameter

21230 At the end of the case and the default statement a colon is expected

21231 Unknown operator or procedure

21232 Qualifier ’par_start’ before ’:’ or ’<ThreadID>’ expected

21233 ’<ThreadID>’ variable in angle brackets after ’par_start’ expected

21234 ThreadID variable after ’par_start<’ expected

21235 Closing angle bracket (’>’) after ’par_start<ThreadID’ expected

21236 Colon (’:’) after ’par_start<ThreadID>’ expected

21237 Operator or procedure call after ’par_start :’ expected

21238 This expression cannot be used as ThreadID

21239 Dictionary expression cannot be used as parameter in par_start call

21900 Internal value has the wrong type

21901 Internal value is not a vector

21902 Index into internal value is out of range

21903 Internal value is not instantiated

22000 Internal operation in expression failed

22001 Internal operation in a constant expression failed

22010 Parameters are tuples with different size

22011 Division by zero

22012 String exceeds maximum length

22100 Parameter is an empty tuple

22101 Parameter has more than one single value

22102 Parameter is not a single value

22103 Parameter has the wrong number of elements

22104 Parameter contains undefined value(s)

22105 Parameter contains wrong value(s)

22106 Parameter contains value(s) with the wrong type

22200 First parameter is an empty tuple

22201 First parameter has more than one single value

22202 First parameter is not a single value

22203 First parameter has the wrong number of elements

22204 First parameter contains undefined value(s)

22205 First parameter contains wrong value(s)

22206 First parameter contains value(s) with the wrong type

22300 Second parameter is an empty tuple

22301 Second parameter has more than one single value

22302 Second parameter is not a single value

8.14 Emergency Backup 297

22303 Second parameter has the wrong number of elements

22304 Second parameter contains undefined value(s)

22305 Second parameter contains wrong value(s)

22306 Second parameter contains value(s) with the wrong type

22400 Calling context was not set

22401 Accessing an invalid calling context

22402 Error while accessing calling context data

22500 Communication with external application failed

22501 Debug session with external application no longer valid

22502 An unexpected error occured in the external application

22503 Wrong password to unlock procedure in external application

23100 The generic parameter value is unknown

23101 The generic parameter name is unknown

30000 User defined exception

8.14 Emergency Backup

In case HDevelop ever crashes during program execution, the current program is saved in a temporary location.
After restarting HDevelop, you can restore the backup file to continue your application. You can find the backup
file highlighted in red under your Recent Programs list in the start dialog.

When restarting the computer, the locally saved backup files will be deleted.
!The exact location of the data depends on the operating system you are using:

Linux /tmp/hdevelop_login (substitute login with your login name)

Windows %TEMP%\hdevelop

La
ng

ua
ge

298 HDevelop Language

Remote Debugging 299

Chapter 9

Remote Debugging

HDevelop supports the debugging of HDevelop code in stand-alone applications. This is referred to as “remote
debugging”. An external application can execute HDevelop procedures using HDevEngine. If it explicitly enables
remote debug connections, HDevelop may attach to this application. Once the connection has been established,
HDevelop operates in a special debugging mode, see figure 9.1. How to enable remote debugging is described in
the Programmer’s Guide, section 25.2 on page 201. The following sections describe the HDevelop side of remote
debugging.

9.1 Requirements

To be able to use remote debugging, both the external application and HDevelop must be based on the same
version of HALCON. Furthermore, the version of HDevelop must at least be as “large” as that of HDevEngine. If
the external application uses HDevEngine XL, you cannot use HDevelop non-XL.

Please note that cross-platform debugging is supported. You can debug an external application running on Windows
using HDevelop on Linux.

9.2 Attaching to an External Application

• Make sure the external application is running and has remote debugging enabled as described in the Pro-
grammer’s Guide, section 25.2 on page 201.

• Run HDevelop.

• Click Execute . Attach To Process....

Procedure A

Procedure B

Procedure Z

External Application

HDevEngine

...

attach to process

Figure 9.1: Remote debugging.

R
em

ot
e

D
eb

ug
gi

ng

300 Remote Debugging

Figure 9.2: Attaching to an external application.

Figure 9.3: HDevelop running in remote debug mode.

• Enter the host name and connection port, and, optionally, the password. See figure 9.2. The default host
name (localhost) can be used if both the external application and HDevelop run on the same machine.

Please note that your firewall must be configured to allow connections on the specified port. The default port
number is 57786, but this can be changed in the external application. If a debug session is already active on the
given machine, you can choose to take over the existing session. This will terminate the previous session.

After connecting, large parts of the user interface of HDevelop are grayed out. This applies to the functionality
related to the normal operation of HDevelop, such as procedures, operators, assistants, and preferences. The special
debug mode is indicated in the window title and by the red background color of the status bar, see figure 9.3. The
background color of the program window also changes to indicate the read-only nature of the remote debug mode.
This color can be customized in the preferences in normal mode.

9.3 Debugging 301

9.3 Debugging

Remote debugging is in most parts similar to “local” debugging. The procedure execution is controlled by execu-
tion commands (for example, Stop, Step Over, Step Into etc.). Debugging is only possible in stopped mode.
If HDevEngine is in run mode, the status bar reads “Running... External application”, the following applies:

• No PC is displayed.

• Variables are uninitialized.

• Application threads cannot be selected, and the call stack is empty.

Independent of whether run or stop mode is active, the loaded procedures can be viewed in the program window.
As usual, breakpoints may be set on program lines and variables. Activated breakpoints persist as long as the
external application is running. In contrast, deactivated breakpoints disappear on disconnect. HDevEngine stops
at breakpoints only if HDevelop is actually attached.

Pressing Stop causes HDevelop to wait for the external application to execute code in HDevEngine. In stop mode
you can execute program lines step-by-step and view intermediate results in both the variable and the graphics
window. Other than that, the execution cannot be influenced:

• The PC cannot be repositioned.

• The values of variables cannot be altered.

• The procedures cannot be reset.

• The program code cannot be modified (see also section 9.9).

If the application executes procedure calls in the GUI thread, attaching a debugger and stopping the execution will
freeze the application GUI.

9.4 Handling of Procedures

The program window provides access to all procedures loaded by HDevEngine during the debugging session.
Unloading procedures will not cause the corresponding procedures to be removed from the list. This is to ensure
usability even if the application loads/unloads procedures in a loop. You can disconnect and then reconnect the
debugger to refresh the list.

The external application can load multiple copies of the same procedure. In HDevelop however, duplicate pro-
cedure names are shown only once. As a result, breakpoints set in a duplicate procedure will apply to all loaded
copies. If another copy is loaded at a later time, the breakpoint will not be active for it.

9.5 Handling of Protected Procedures

Debugging protected procedures is also supported in HDevelop. If such a procedure is selected in the program
window, you will be prompted for a password to unlock it. Unlocking protected procedures only has an effect
inside HDevelop. The state of the procedures in the external application does not change. The unlocked state is
only valid for the current debug session. If you or another user reconnects to the same process, the procedures
will be locked again. There is no explicit way to relock an unlocked procedure during debugging. You can stop
debugging and attach again to achieve this.

9.6 Error Handling

The behavior of handling errors in the HDevelop code of the external application depends on whether or not the
exception is handled in the program code. If the exception is unhandled, the error message will be shown in
HDevelop, and the application will wait for a Step or Run signal before raising HDevEngineException itself. If
the exception is handled, there is no way to stop the execution.

R
em

ot
e

D
eb

ug
gi

ng

302 Remote Debugging

9.7 Threading

Application threads are supported. After sending a stop signal to the application (Stop or
�� ��F9), a random thread

will be selected in HDevelop. Stepping over the last line of a procedure switches threads if another stopped HDev-
Engine thread is waiting. In case HDevEngine stops due to a breakpoint or an error, HDevelop will automatically
switch to the corresponding thread.

The normal thread view in the dialog Execute . Thread View / Call Stack is not available, but threads can
be switched from this dialog by clicking the button Show Application Threads....

Please note that subthreads started with par_start cannot be debugged.

9.8 Terminating a Remote Debug Session

Click Execute . Stop Debugging to terminate the debugging session. The debug server will continue to run
and accept further connections as long as HDevEngine keeps running. In case the external application is currently
stopped at the moment the session is terminated, HDevelop will offer to resume the execution before disconnecting.
Otherwise, the thread executing the procedure calls will be frozen until you reconnect and continue running it.

The debugging session will also be terminated if the external application itself stops the debug server or if the
session is taken over by a subsequent connection.

9.9 Limitations

• Procedures cannot be edited in HDevelop.

• Name conflicts between procedures are not supported.

• Semantic types and special inspection widgets, for example 3D object models, are not supported.

• The graphics window is not always updated after each Step. As a workaround, you can double-click an
iconic variable to display its current value.

Further limitations of remote debugging from the HDevEngine side are listed in the Programmer’s Guide, sec-
tion 25.2.4 on page 203.

Code Export 303

Chapter 10

Code Export

The idea of code export or code generation is as follows: After developing a program according to the given
requirements it has to be translated into its final environment. For this, the program is transferred into another
programming language that can be compiled.

For C++ and C# developers there is a recommended approach for integrating HDevelop code into their own
projects. Instead of exporting an entire HDevelop program to C++ or C#, a library project can be exported,
which can be directly integrated into your own projects. The procedure can be called as simple as in HDevelop.
The library project export is described in section 10.1.

Alternatively, HDevelop allows you to export an entire HDevelop program to the programming languages C++,
Visual Basic .NET, C#, and C by writing the corresponding code to a file. This approach is described in section 10.2
on page 307.

10.1 Exporting Library Projects

See also: hdevelop -export_project (command line switch (page 323)).

Exporting a library project makes it easy to integrate HDevelop code into your projects. You can export a project
containing either a selected procedure library or the local procedures of the current program. Watch our tutorial
video and learn how to use the library project export to integrate HDevelop code into an existing Visual Studio
application.

The following target languages are supported:

• C++

• C#

The project will be exported to a project directory with the following components:

• Wrapper code in the target language

• CMake file to build the project (CMake is freely available at https://cmake.org/)

• the selected procedure library (or HDevelop program containing the local procedures)

Additionally, for C++ the following files are generated:

• C++ header file

• CMake functions to resolve the HALCON environment

10.1.1 Requirements

10.1.1.1 C++

• CMake version 3.3 or higher is required to build the exported project.

C
od

e
E

xp
or

t

http://www.mvtec.com/news-press/video/detail/hdevelop-library-project-export/?pk_campaign=hdevelop&pk_source=hdevelop_help
http://www.mvtec.com/news-press/video/detail/hdevelop-library-project-export/?pk_campaign=hdevelop&pk_source=hdevelop_help
https://cmake.org/

304 Code Export

Figure 10.1: Export Library Project dialog.

• The exported code makes use of some C++11 elements. These will not work with old compilers. The
minimum requirements for the target compilers are: VS 2013, GCC 4.8.6, clang 3.9, and ICC 16. Older
compilers might work but are not supported.

10.1.1.2 C#

• CMake version 3.9 or higher is required to build the exported project.

• Only the project generators for VS 2010 and above are supported.

10.1.2 Project Preparation

Before you can export a library project, you need to create a procedure library containing all procedures that will
be required in your application. Alternatively, create a HDevelop program containing the required functionality in
local procedures. In the latter case, the main procedure will not be exported.

The declaration of public and private procedures defines the interface for your application. Public procedures
can be called from your application. Private procedures can only be called from procedures within the library or
HDevelop program.

10.1.3 Exporting a Library Project

Select File . Export Library Project to open the export dialog (see figure 10.1).

10.1.4 Using the Exported Library Project 305

Source

Input file

Select a procedure library to be exported. If Current Program is selected, the local procedures of the
current program will be exported.

If the selected file becomes unavailable (for example, because the procedure path settings have been changed
in the meantime), an error message is displayed.

Target Project Settings

Target Language

Specify the target language of the exported project (C++ or C#).

Encoding

Specify the text encoding of the exported project (either Native or UTF-8). Selecting Native will use the
current code page on Windows and UTF-8 on other platforms.

Currently, the other target project settings can not be modified. The library project will be exported to a
CMake-based project. The exported library will be accessible through a HDevEngine wrapper. Building the
exported project will result in a static library that can be linked to an application.

Destination

Project Name

Enter the project name. The project name specifies the name of a subdirectory of the project location, which
will contain all generated files. If the project name is not a valid file name, an error message is displayed.

Project Location

Specify the destination directory of the exported project. Relative paths are allowed – the path will be relative
to the current working directory (see get_current_dir).

Namespace

Specify the namespace of the exported library project. The namespace must be valid for the target language.
Otherwise, an error message is displayed.

Export

Shows the final location of the library project based on the settings in Destination. After specifying the
project properties, click the button Export to generate the library project. If you export from HDevelop XL,
you will obtain an XL variant of the library project.

Previous exports at the same location will be silently overwritten.
!

The project directory will contain the following files:

• CMakeLists.txt

CMake control file.

• cmake (C++ only)
Directory containing CMake code for the resolution of HALCON and HDevEngine.

• res_project name

Directory containing the exported procedure library or HDevelop program.

• source

Directory containing the exported wrapper code and, for C++, a header file. In case of exporting Current

Program with no local procedure at all, a project directory will still be created. However, there will not be
any callable procedures/resources inside. If you experience this, try putting the relevant code of the main
procedure into a local procedure and repeat the library export.

10.1.4 Using the Exported Library Project

10.1.4.1 Converting to Visual Studio

The CMake project can easily be converted to a Visual Studio project via the Generate option. The following
example generates a project for Visual Studio 2015 (64-bit), but other generators are available as well.

C
od

e
E

xp
or

t

306 Code Export

• Open a command prompt

• Change to the exported project directory (containing CMakeLists.txt).

• Generate the Visual Studio project:

cmake . -G "Visual Studio 14 2015 Win64"

Run cmake -G to get a list of available generators.

10.1.4.2 Integrating the Project Into Your Own Projects

CMake

Move the exported project into a subdirectory of your CMake project and use it in your application project(s).
Assuming the exported library has the name MyLibrary, a minimal CMakeLists.txt file for an executable project
named ExportTest using the library look as follows:

project(ExportTest)

add_subdirectory(MyLibrary)

add_executable(ExportTest main.cpp)

target_link_libraries(ExportTest MyLibrary)

Visual Studio

• Add the library.

• Add the includes.

When linking the generated library project into the user application, both hdevenginecpp.lib and
halconcpp.lib (C++), or hdevenginedotnet.dll and halcondotnet.dll (C#) must be added to the project
as well. This is, because the HDevEngine symbols are not included in the exported library.

10.1.4.3 Updating the Exported Library Project

If you are working with CMake to configure and build your application, you can (re-)export directly into your
application project file structure. However, be aware that HDevelop will silently overwrite any existing files in!
the target location.

10.1.4.4 Using the Exported Library in C++

• Use the function SetResourcePath to set the directory containing the exported scripts.

• Include the exported header file.

• Call the procedures.

Note that the procedures only use parameters of type HObject, HTuple, HObjectVector, and HTupleVector.

Using a Different Resource Location

SetResourcePath can be used in the application to specify a custom location of the HDevelop script or procedure
library.

Working With Additional Procedure Libraries

If the exported procedure libraries use procedures contained in further procedure libraries, these additional pro-
cedure libraries will not be copied over to the project export target directory. You have to manually take care of
copying these additional files or add procedure library paths pointing to the used additional procedure libraries in
your application code when using the exported library.

To add procedure paths to HDevEngine, use the following call:

HDevEngineCpp::HDevEngine().AddProcedurePath(...)

10.2 Exporting Entire HDevelop Programs 307

10.1.4.5 Using the Exported Library in C#

• Use the function ResourcePath to set the directory containing the exported scripts.

• Call the procedures, for example,

MyNamespace.MyLibrary.my_procedure()

Note that the procedures only use parameters of type HObject, HTuple, HObjectVector, and HTupleVector.

Using a Different Resource Location

ResourcePath can be used in the application to specify a custom location of the HDevelop script or procedure
library.

Working With Additional Procedure Libraries

If the exported procedure libraries use procedures contained in further procedure libraries, these additional pro-
cedure libraries will not be copied over to the project export target directory. You have to manually take care of
copying these additional files or add procedure library paths pointing to the used additional procedure libraries in
your application code when using the exported library.

To add procedure paths to HDevEngine, use the following call:

HalconDotNet::HDevEngine().AddProcedurePath(...)

10.2 Exporting Entire HDevelop Programs

HDevelop allows you to export a developed HDevelop program to the programming languages C++, Visual Basic
.NET, C#, and C. The following sections describe the general steps of program development using this feature
including some language-specific details of the code generation and optimization aspects for the following lan-
guages:

• C++ (section 10.2.1),

• C# – HALCON/.NET (section 10.2.2 on page 309),

• Visual Basic .NET – HALCON/.NET (section 10.2.3 on page 311),

• C (section 10.2.4 on page 313),

Because HDevelop does more than just execute a HALCON program, the behavior of an exported program will
differ in some points from its HDevelop counterpart. A prominent example is that in HDevelop, all results are
automatically displayed, while in the exported programs you have to insert the corresponding display operators
explicitly. Section 10.2.5 on page 314 describes these differences in more detail.

10.2.1 Code Generation for C++

This section describes how to create a HALCON application in C++, starting from a program developed in HDe-
velop.

10.2.1.1 Basic Steps

Program Export

To export the program, use the menu File . Export Program... and select the language (C++ - HALCON/C++).
The created file contains the HDevelop program as C++ source code.

For every HDevelop procedure except the main procedure, the exported file contains a C++ procedure with the
corresponding name.

C
od

e
E

xp
or

t

308 Code Export

Iconic input and output parameters of a procedure are declared as HObject and HObject*, respectively, while
control input and output parameters are declared as HTuple and HTuple*, respectively.
All procedures are declared at the beginning of the file. The program body of the HDevelop main procedure is
contained in a procedure action(), which is called in the function main().
action() and main() can be excluded from compilation by inserting the instruction #define NO_EXPORT_MAIN

at the appropriate position in the application.
To exclude the main() procedure from compilation only, use the instruction #define NO_EXPORT_APP_MAIN.
This can be useful if you want to integrate exported HDevelop code into your application through specific proce-
dure interfaces. In that case, there is typically no need to export the main procedure, which was probably used only
for testing the functionality implemented in the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables (iconic as well
as control) are declared in the corresponding procedures. Iconic variables belong to the class HObject and all
other variables belong to HTuple.

Compiling and Linking

To compile and link the new program (called, for example, test.cpp), you can use the exam-
ple CMake file, which can be found in the directory %HALCONEXAMPLES%\cpp\console (Windows) or
$HALCONEXAMPLES/cpp/console (Linux).

Open the CMakeLists.txt in an editor and add lines similar to the following after the include(UseHalcon)

line:

add_executable(test.cpp)

target_link_libraries(test HALCON::CppInt)

If you want to build using HALCON XL, set the option HALCON_XL to ON or 1 during the configuration step. For
this, use the following syntax:

cmake -DHALCON_XL=1 %HALCONEXAMPLES%/cpp/console

To configure the build and create the application, run the following commands:

mkdir build

cd build

cmake %HALCONEXAMPLES%/cpp/console

cmake --build .

For more information, see the Programmer’s Guide, chapter 7 on page 51.

10.2.1.2 Optimization

Optimization might be necessary for variables of class HTuple. This kind of optimization can either be done in
HDevelop or in the generated C++ code. In most cases, optimization is not necessary if you program according to
the following rules.

• Using the tuple concatenation, it is more efficient to extend a tuple at the “right” side, like:

T := [T,New]

because this can be transformed to

T = T.TupleConcat(New);

in C++ and requires no creation of a new tuple, whereas

T := [New,T]

which is translated into

10.2.2 Code Generation for C# (HALCON/.NET) 309

T = HTuple(New).TupleConcat(T);

would need the creation of a new tuple.

• Another good way to modify a tuple is the operator assign_at (see section 8.5.2 on page 254). In this case,
HDevelop code like

T[i] := New

can directly be translated into the efficient and similar looking code

T[i] = New;

10.2.1.3 Used Classes

There are only two classes that are used: HTuple for control parameters and HObject for iconic data. There is no
need for other classes as long as the program has the same functionality as in HDevelop. When editing a generated
program you are free to use any of the classes of HALCON/C++ to extend the functionality.

10.2.1.4 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 10.2.5 on page 314, please also check the descrip-
tion of the HDevelop operators in section 6.1.6 on page 60.

Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a dialog window.
This might not be useful in C++. The standard way to handle this in C++ is by using the try-catch mechanism.
This allows you to access the reason for the exception and to continue accordingly. HDevelop supports exception
handling using try-catch blocks, which is exported transparently to C++. Therefore, it is the recommended
method of handling errors in HDevelop programs that are going to be exported to C++.

For HDevelop programs containing error handling using dev_set_check('~give_error') (or
set_check('~give_error')), the corresponding code is automatically included. Every operator call, for
which it is assumed that the HALCON error mechanism is turned off, is enclosed in a try block followed by a
catch block. The latter handles the exception and assigns the corresponding HALCON error number to the error
variable activated by dev_error_var or to a local error variable otherwise.

Please note that a call of dev_set_check('~give_error') has no influence on the operator call. The exception
will always be raised.

10.2.2 Code Generation for C# (HALCON/.NET)

This section describes how to create a HALCON application in C#, starting from a program developed in HDe-
velop. HALCON can be used together with C# based on the .NET interface of HALCON. A detailed description
of this interface can be found in the Programmer’s Guide, part III on page 61.

10.2.2.1 Basic Steps

Export

To export the program, use the menu File . Export Program... and select the language (C# - HALCON/.NET).
The created file with extension “.cs” contains the HDevelop program as C# source code.

C
od

e
E

xp
or

t

310 Code Export

Using the C# Template

If the file has been exported using the option Use Export Template, it is intended to be used together with the
predefined C# project that can be found in the directory

%HALCONEXAMPLES%\c#\HDevelopTemplate

This project contains a form with a display window (HWindowControl) and a button labeled Run. Add the file
generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the project is ready
for execution: Run the project and then press the button Run on the form, which will call the exported code.

Additional information about using the template can be found in the Programmer’s Guide, section 12.3.1 on page
88.

10.2.2.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDevelop contains
a subroutine with the corresponding name for every HDevelop procedure except the main procedure, which is
contained in the subroutine action().
Otherwise, the file is exported as a standalone application. Iconic input and output parameters of a procedure
are passed as HObject and out HObject, respectively, while control input and output parameters are passed as
HTuple and out HTuple, respectively. The subroutine RunHalcon() contains a call to the subroutine action()
and has a parameter Window, which is of type HTuple. This is the link to the window on the form to which
all output operations are passed. In addition, another subroutine is created with the name InitHalcon(). This
subroutine applies the same initializations that HDevelop performs.

Most of the variables, iconic as well as control, are declared locally inside the corresponding subroutines. Iconic
variables belong to the class HObject and control variables belong to HTuple.

Depending on the program, additional subroutines and variables are declared.

Stop

If the program has been exported using the option Use Export Template, the HDevelop operator stop is trans-
lated into a subroutine in C# that creates a message box. This message box causes the program to halt until the
button is pressed.

If the program has been exported using the option Use HALCON Windows, the operator stop will be ignored as
this export is mainly intended to compile and run standalone.

Used Classes

There are only four classes/types that are used: HTuple for control parameters and HObject for iconic data. In
addition, there is the class HWindowControl. It is used inside the project for the output window and a variable
of class HTuple directs the output to this window. Finally, the class HOperatorSet is used as a container for all
HALCON operators. There is no need for other classes as long as the program has the same functionality as in
HDevelop. When editing a generated program you are free to use any of the classes of HALCON/.NET to extend
the functionality.

10.2.2.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 10.2.5 on page 314, please also check the descrip-
tion of the HDevelop operators in section 6.1.6 on page 60.

Variable Names

The export adds the prefix ho_ to all local iconic and hv_ to all local control variables, respectively, to avoid
collisions with reserved words.

10.2.3 Code Generation for Visual Basic .NET (HALCON/.NET) 311

Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a dialog window.
This might not be useful in C#. The standard way to handle this in C# is by using the try-catch mechanism. This
allows you to access the reason for the exception and to continue accordingly. For HDevelop programs contain-
ing error handling using dev_set_check('~give_error') (or set_check('~give_error')), the corresponding
code is automatically included. Every operator call, for which it is assumed that the HALCON error mechanism
is turned off, is enclosed in a try block followed by a catch block. The latter handles the exception and assigns
the corresponding HALCON error number to the error variable activated by dev_error_var or to a local error
variable otherwise.

Please note that a call of dev_set_check('~give_error') has no influence on the operator call. The exception
will always be raised. This is also true for messages like H_MSG_FAIL, which are not handled as exceptions in
C++, for example.

Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism called garbage
collector, which is used by the CLR to remove no longer needed .NET objects from memory. As mentioned earlier,
in the exported C# code every iconic object is represented by a .NET HObject object. From the garbage collector’s
point of view, a .NET HObject object is rather small. Thus, it might not be collected from memory although the
underlying iconic object (for example, an image) might in fact occupy a large portion of memory. To avoid memory
leaks caused by this effect, in the exported code every iconic object is disposed explicitly before it is assigned a
new value.

10.2.3 Code Generation for Visual Basic .NET (HALCON/.NET)

This section describes how to create a HALCON application in Visual Basic .NET, starting from a program de-
veloped in HDevelop. HALCON can be used together with Visual Basic .NET based on the .NET interface of
HALCON. A detailed description of this interface can be found in the Programmer’s Guide, part III on page 61.

10.2.3.1 Basic Steps

Export

To export the program, use the menu File . Export Program... and select the language (Visual Basic .NET

- HALCON/.NET). The created file with extension “.vb” contains the HDevelop program as Visual Basic .NET
source code.

Using the Visual Basic .NET Template

If the file has been exported using the option Use Export Template, it is intended to be used together with the
predefined Visual Basic .NET project that can be found in the directory

%HALCONEXAMPLES%\vb.net\HDevelopTemplate

This project contains a form with a display window (HWindowControl) and a button labeled Run. Add the file
generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the project is ready
for execution: Run the project and then press the button Run on the form, which will call the exported code.

Additional information about using the template can be found in the Programmer’s Guide, section 12.3.1 on page
88.

10.2.3.2 Program Structure

If the program has been exported using the option Use Export Template, the file created by HDevelop contains
a subroutine with the corresponding name for every HDevelop procedure except the main procedure, which is
contained in the subroutine action(). Otherwise, the file is exported as a standalone application. Iconic input and

C
od

e
E

xp
or

t

312 Code Export

output parameters of a procedure are passed as ByVal HObject and ByRef HObject, respectively, while con-
trol input and output parameters are passed as ByVal HTuple and ByRef HTuple, respectively. The subroutine
RunHalcon() contains a call to the subroutine action() and has a parameter Window, which is of type HTuple.
This is the link to the window on the form to which all output operations are passed. In addition, another subroutine
is created with the name InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables, iconic as well as control, are declared locally inside the corresponding subroutines. Iconic
variables belong to the class HObject and control variables belong to HTuple.

Depending on the program, additional subroutines and variables are declared.

Stop

If the program has been exported using the option Use Export Template, the HDevelop operator stop is trans-
lated into a subroutine in Visual Basic .NET that creates a message box. This message box causes the program to
halt until the button is pressed.

If the program has been exported using the option Use HALCON Windows, the operator stop will be ignored as
this export is mainly intended to compile and run standalone.

Exit

The HDevelop operator exit is translated into the Visual Basic .NET routine End. Because this routine has no
parameter, the parameters of exit are suppressed.

Used Classes

There are only four classes/types that are used: HTuple for control parameters and HObject for iconic data. In
addition, there is the class HWindowControl. It is used inside the project for the output window and a variable
of class HTuple directs the output to this window. Finally, the class HOperatorSet is used as a container for all
HALCON operators. There is no need for other classes as long as the program has the same functionality as in
HDevelop. When editing a generated program you are free to use any of the classes of HALCON/.NET to extend
the functionality.

10.2.3.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 10.2.5 on page 314, please also check the descrip-
tion of the HDevelop operators in section 6.1.6 on page 60.

Variable Names

In contrast to C, C++, or HDevelop, Visual Basic .NET has many reserved words. Thus, the export adds the prefix
ho_ to all iconic and hv_ to all control variables, respectively, to avoid collisions with these reserved words. See
also section 10.2.5.3 on page 315 about case sensitivity.

Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a dialog win-
dow. This might not be useful in Visual Basic .NET. The standard way to handle this in Visual Basic .NET
is by using the Try-Catch mechanism. This allows you to access the reason for the exception and to con-
tinue accordingly. For HDevelop programs containing error handling using dev_set_check('~give_error')
(or set_check('~give_error')), the corresponding code is automatically included. Every operator call, for
which it is assumed that the HALCON error mechanism is turned off, is enclosed in a Try block followed by a
Catch block. The latter handles the exception and assigns the corresponding HALCON error number to the error
variable activated by dev_error_var or to a local error variable otherwise.

Please note that a call of dev_set_check('~give_error') has no influence on the operator call. The exception
will always be raised. This is also true for messages like H_MSG_FAIL, which are not handled as exceptions in
C++, for example.

10.2.4 Code Generation for C 313

Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism called garbage
collector, which is used by the CLR to remove no longer needed .NET objects from memory. As mentioned earlier,
in the exported Visual Basic .NET code every iconic object is represented by a .NET HObject object. From the
garbage collector’s point of view, a .NET HObject object is rather small. Thus, it might not be collected from
memory although the underlying iconic object (for example, an image) might in fact occupy a large portion of
memory. To avoid memory leaks caused by this effect, in the exported code every iconic object is deleted explicitly
before it is assigned a new value.

Parallel Execution

If the program to be exported includes the parallel execution of procedure or operator calls using par_start (see
section 8.11 on page 283), the exported code requires Visual Studio 2010 or higher.

10.2.4 Code Generation for C

This section describes how to create a HALCON application in C, starting from a program developed in HDevelop.

10.2.4.1 Basic Steps

Program Export

The first step is to export the program using the menu File . Export Program.... Here, select the language
(C - HALCON/C) and save it to file. A file will be created that contains the HDevelop program as C source code.
For every HDevelop procedure except the main procedure, the exported file contains a C procedure with the cor-
responding name. Iconic input and output parameters of a procedure are declared as Hobject and Hobject*,
respectively, while control input and output parameters are declared as Htuple and Htuple*, respectively. All
procedures are declared at the beginning of the file. The program body of the HDevelop main procedure is con-
tained in a procedure action() which is called in function main(). action() and main() can be excluded from
compilation by inserting the instruction #define NO_EXPORT_MAIN at the appropriate position in the application.
Using the instruction #define NO_EXPORT_APP_MAIN only the main() procedure is excluded from compilation.
This can be useful if you want to integrate exported HDevelop code into your application through specific proce-
dure interfaces. In that case, there is typically no need to export the main procedure, which was probably used only
for testing the functionality implemented in the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables (iconic as well
as control) are declared in the corresponding procedures. Iconic variables belong to the class Hobject and all
other variables belong to Htuple.

Please note that in the current version the generated C code is not optimized for readability. It is output such that
it always produces identical results as the HDevelop code.

Compiling and Linking

The next step is to compile and link this new program.

To compile and link the new program (called, for example, test.c), you can use the example CMake file, which
can be found in the directory %HALCONEXAMPLES%\c (Windows) or $HALCONEXAMPLES/c (Linux).

Open the CMakeLists.txt in an editor and add lines similar to the following after the include(UseHalcon)

line:

add_executable(test test.c)

target_link_libraries(test HALCON::CInt)

If you want to build using HALCON XL, set the option HALCON_XL to ON or 1.

To configure the build and create the application, run the following commands:

C
od

e
E

xp
or

t

314 Code Export

Prefix Destination export_def

The place of insertion ’in_place’

#ˆˆ Beginning of the program ’at_file_begin’

#$$ End of the program ’at_file_end’

#ˆ Before the current procedure ’before_procedure’

#$ After the current procedure ’after_procedure’

Table 10.1: Embedding arbitrary code in HDevelop.

mkdir build

cd build

cmake %HALCONEXAMPLES%/c

cmake --build .

For more details see the Programmer’s Guide, chapter 19 on page 125.

10.2.5 General Aspects of Code Generation

In the following, general differences in the behavior of an HDevelop program and its exported versions are de-
scribed.

10.2.5.1 Arbitrary Program Code

It is possible to embed arbitrary code into HDevelop programs. This code is ignored inside HDevelop. When you
export the program to a programming language, the embedded code is passed through verbatim.

Program lines starting with # as the first character mark an arbitrary code line. The marker and the first space
character following it are discarded when exporting the program. For example, the line

Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in HDevelop will result in

Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in Visual Basic. The # may be followed by other special characters that further specify where the code block will
be placed upon exporting. For example, the line

#^^ #define NO_EXPORT_APP_MAIN

puts the line

#define NO_EXPORT_APP_MAIN

at the very beginning of the exported program. Code lines in this format are collected from the main procedure
first, followed by #^^ lines in other procedures.

The recognized special markers are summarized in table 10.1.

If you are using the operator window to enter arbitrary code lines, you will have to select the special operator
export_def. Its first parameter specifies the destination of the exported code line (see the last column of table 10.1
for reference). The second parameter is the code line itself. When you submit the operator to the program window,
the operator call will be converted to the special prefix characters for better readability.

10.2.5 General Aspects of Code Generation 315

10.2.5.2 Assignment

In HDevelop each time a new value is assigned to a variable its old contents are removed automatically, independent
of the type of the variable. In the exported code, this is also the case for iconic objects (HALCON/C++: Hobject,
HALCON/.NET: HObject) and for the class HTuple (HALCON/C++, HALCON/.NET). Because C does not
provide destructors, the generated C code calls the operators clear_obj and destroy_tuple to remove the
content of iconic output parameters (Hobject) and control output parameters (Htuple) before each operator call.
Memory issues regarding iconic objects in HALCON/.NET are described in section 10.2.3.3 (Visual Basic .NET)
and section 10.2.2.3 (C#).

10.2.5.3 Variable Names

Variable names in HDevelop are case-sensitive, x and X are distinct variable names in HDevelop programs. If
you export such a program to a case-insensitive target language, for example Visual Basic .NET, the development
environment will complain about multiple declarations. Either plan ahead and avoid these variable names, or use
the Find/Replace dialog to substitute conflicting variable names before exporting your program.

10.2.5.4 Protected Procedures

As described for the different programming languages, HDevelop procedures are exported automatically to pro-
cedures or subroutines of the selected programming language. This does not hold for the protected procedures
described in section 5.6 on page 47. These procedures are protected by a password so that they cannot be viewed
and modified by unauthorized users. Thus, as long as they are locked by the password, they can not be exported to
any programming language.

10.2.5.5 System Parameters

You should know that HDevelop performs some changes of system parameters of HALCON by calling the operator
set_system (see the reference manual). This might cause the exported program not to produce identical output. If
such a problem arises, you may query the system parameters by means of get_system in HDevelop after or while
running the original HDevelop version of the program. Depending to the problem, you can now modify relevant
parameters by explicitly calling the operator set_system in the exported program.

10.2.5.6 Graphics Windows

HALCON provides a functionality that emulates the behavior of HDevelop graphics windows for HALCON win-
dows. This HALCON window stack is accessible via class methods and functions in the HALCON interfaces,
and code exported from HDevelop uses this functionality when opening, closing, setting, or accessing the active
window. The HALCON window stack mechanism is threadsafe and can be shared among threads. Though, in
a multithreaded application the user has to take care when switching the active window in different threads, as
setting it in one thread will also set it for other threads.

For the .NET code export it is optional whether to export HDevelop programs as code using the HDevelop export
example templates or as code using the previously described HALCON window stack functionality when doing
graphics windows output. Additionally, in the latter case the exported code contains a main function and thus is
usable as a standalone application. The HDevelop Export dialog allows you to select the corresponding option.

The graphics windows of HDevelop and the basic windows of the HALCON libraries

• HALCON/C++: class HWindow,

• HALCON/.NET: class HWindowControl, and

• HALCON/C: addressed via handles

have different functionality.

C
od

e
E

xp
or

t

316 Code Export

• Multiple windows
If you use the operator dev_open_window to open multiple graphics windows in HDevelop, these calls will
be converted into corresponding calls of open_window only if the export option Use HALCON Windows is
selected.

In the export of Visual Basic .NET, and C# programs using the option Use Export Template, all window
operations are suppressed, because the exported code is intended to work together with the corresponding
template. If you want to use more than one window in programs exported in this mode, you have to modify
the code and project manually.

Note that the export of programs containing multiple windows using the option Use HALCON Windowsmight
be incorrect if the active graphics window was changed using the mouse during program execution. It is
recommended to use the operator dev_set_window explicitly to achieve the same functionality.

• Window size
In exported Visual Basic .NET, and C# programs, the size of the window on the form is predefined (512 ×
512); thus, it will normally not fit your image size. Therefore, you must adapt the size interactively or by
using the properties of the window.

• Displaying results
Normally, the result of every operator is displayed in the graphics window of HDevelop. This is not the case
when using an exported program. It behaves like the HDevelop program running with the option: “update
window = off”. We recommend inserting the operator dev_display in the HDevelop program at each point
where you want to display data. This will not change the behavior of the HDevelop program but result in the
appropriate call in the exported code.

When generating code using the option Use HALCON Windows, close the default graphics window (using
dev_close_window) and open a new one (using dev_open_window) before the first call of dev_display
in order to assure a correct export.

• Displaying images
In HDevelop, images are automatically scaled to fit the current window size. This is not the case in exported
programs. For example, if you load and display two images of different size, the second one will appear
clipped if it is larger than the first image or filled up with black areas if it is smaller. For a correct display,
you must use the operator dev_set_part before displaying an image with dev_display as follows:

dev_set_part (0, 0, ImageHeight-1, ImageWidth-1)

dev_display (Image)

In this example, Image is the image variable, ImageHeight and ImageWidth denote its size. You can query
the size of an image with the operator get_image_size. Please consult the HALCON Reference Manuals
for more details.

Note that the operator dev_set_part (and its HALCON library equivalent set_part) is more commonly
used for displaying (and thereby zooming) parts of images. By calling it with the full size of an image as
shown above, you assure that the image exactly fits the window.

• Changing display parameters
If you change the way how results are displayed (color, line width, etc.) in HDevelop interactively via the
menu Visualization, these changes will not be incorporated in the exported program. We recommend
inserting the corresponding Develop operators (for example, dev_set_color or dev_set_line_width)
in the HDevelop program explicitly. This will result in the appropriate call (set_color, set_line_width,
etc.) in the exported code.

10.2.5.7 Unset Output Parameters in Procedures

HDevelop and exported code can behave differently regarding the values of output parameters of procedures in
case an output parameter is not assigned a value inside the procedure. This can happen if the procedure returns
with an exception before setting an output parameter or if the parameter was not set on purpose, in which case
the value of the output parameter is not defined and thus HDevelop and the different code exports may behave
differently. The main reason why the code exports are not adapted to behave like HDevelop is that that would
imply a deterioration of runtime efficiency in the exported code.

10.2.5 General Aspects of Code Generation 317

10.2.5.8 Accessing Uninitialized Tuple or Vector Elements

When accessing uninitialized elements of a tuple or vector with HDevelop, an exception is raised. Due to per-
formance reasons, there is no corresponding check in the HALCON language interfaces. Instead of raising an
exception, an element of the default type is returned.

a := [0, 1]

b := a[2]

For example, this code snippet raises an exception in HDevelop, but might return an arbitrary value for b in one of
the language interfaces. Thus, this coding style must be avoided.

C
od

e
E

xp
or

t

318 Code Export

Glossary 319

Appendix A

Glossary

Boolean is the type name for the truth values true and false as well as for the related boolean expressions.

Body A body is part of a conditional instruction (if) or a loop (while or for) and consists of a sequence of
operator calls. If you consider the for-loop, for instance, all operator calls, that are located between for

and endfor form the body.

Control data Control data can be either numbers (↑integer and ↑real), character strings (↑string) and truth
values (boolean). This data can be used as atomic values (i.e., single values) or as ↑tuples (i.e., arrays of
values).

Empty region An empty ↑region contains no points at all, i.e., its area is zero.

Graphics window A graphics window is used in ↑HDevelop for displaying, e.g., ↑images, ↑regions, and ↑XLD.

HDevelop is an interactive program for the creation of HALCON applications.

Iconic data are image data, i.e., image arrays and data, which are described by coordinates and are derived from
image arrays, e.g., ↑regions, ↑images and ↑XLD.

Image An image consists of one or more (multi-channel image) image arrays and a ↑region as the definition
domain. All image arrays have the same dimension, but they can be of different pixel types. The size of the
↑region is smaller or equal than the size of the image arrays. The ↑region determines all image points that
should be processed.

Iconic object Generic implementation of ↑iconic data in HALCON.

integer is the type name for integer numbers.

Operator data base The operator data base contains information about the HALCON operators. It is loaded at
runtime from the binary files in %HALCONROOT%\help.

Program Window In HDevelop the program window contains the program. It is used to edit (copy, delete, and
paste lines) and to run or debug the program.

Operator window In the operator window of HDevelop the parameters of the selected operators can be entered
or modified.

Real is the type name for floating point numbers. They are implemented using the C-type double (8 bytes).

Region A region is a set of image points without gray values. A region can be imagined as a binary image (mask).
Regions are implemented using runlength encoding. The region size is not limited to the image size (see
also set_system(’clip_region’,’true’/’false’) in the HALCON reference manual).

String is the type name for character strings. A string starts and ends with a single quote; in between any character
can be used except single quote. The empty string consists of two consecutive single quotes.

Tuple A tuple is an ordered multivalue set. In case of ↑control data a tuple can consist of a large number of
items with different data types. The term tuple is also used in conjunction with ↑iconic objects, if it is to be
emphasized that several ↑iconic objects will be used.

G
lo

ss
ar

y

320 Glossary

Type ↑iconic variables can be assigned with data items of type ↑image, ↑region, and ↑XLD. The types of ↑control
data items can be one of ↑integer, ↑real, ↑boolean, or ↑string.

Variable window In HDevelop the variable window manages the ↑control and ↑iconic data.

XLD is the short term for eXtended Line Description. It is used as a superclass for contours, polygons, and lines.

Color Names 321

Appendix B

Color Names

The following color names are predefined in HALCON.

Color Name Color Hex Triplet

white sample #FFFFFF

red sample #FF0000

green sample #00FF00

blue sample #0000FF

dim gray sample #696969

gray sample #BEBEBE

light gray sample #D3D3D3

cyan sample #00FFFF

magenta sample #FF00FF

yellow sample #FFFF00

medium slate blue sample #7B68EE

coral sample #FF7F50

slate blue sample #6A5ACD

spring green sample #00FF7F

orange red sample #FF4500

dark olive green sample #556B2F

pink sample #FFC0CB

cadet blue sample #5F9EA0

goldenrod sample #DAA520

orange sample #FFA500

gold sample #FFD700

forest green sample #228B22

cornflower blue sample #6495ED

navy sample #000080

turquoise sample #40E0D0

dark slate blue sample #483D8B

light blue sample #ADD8E6

C
ol

or
N

am
es

322 Color Names

Color Name Color Hex Triplet

indian red sample #CD5C5C

violet red sample #D02090

light steel blue sample #B0C4DE

medium blue sample #0000CD

khaki sample #F0E68C

violet sample #EE82EE

firebrick sample #B22222

midnight blue sample #191970

sea green sample #2E8B57

dark turquoise sample #00CED1

orchid sample #DA70D6

sienna sample #A0522D

medium orchid sample #BA55D3

medium forest green sample #6B8E23

medium turquoise sample #48D1CC

medium violet red sample #C71585

salmon sample #FA8072

blue violet sample #8A2BE2

tan sample #D2B48C

pale green sample #98FB98

sky blue sample #87CEEB

medium goldenrod sample #EAEAAD

plum sample #DDA0DD

thistle sample #D8BFD8

dark orchid sample #9932CC

maroon sample #B03060

dark green sample #006400

steel blue sample #4682B4

medium spring green sample #00FA9A

medium sea green sample #3CB371

yellow green sample #9ACD32

medium aquamarine sample #66CDAA

lime green sample #32CD32

aquamarine sample #7FFFD4

wheat sample #F5DEB3

green yellow sample #ADFF2F

Command Line Usage 323

Appendix C

Command Line Usage

C.1 HDevelop

HDevelop understands many command line switches when started from a console or terminal window. Run the
following command to get a list of all supported command line switches:

hdevelop -h

In general, HDevelop is started using

hdevelop [OPTIONS] [FILE]

FILE can be an HDevelop program, an external procedure, a library file, or an image file. The default action is to
load the given file for editing. If an image file is given, it is preselected in the dialog Read Image... (page 24)
(same behavior as dragging an image file onto a running instance of HDevelop).

Examples

• Load the HDevelop program example.hdev and run it immediately:

hdevelop -run example.hdev

• Run the HDevelop program example.hdev and skip stop calls:

hdevelop -override_stop 0 -run example.hdev

• Use the procedures and libraries from C:/projects in the next session:

hdevelop -external_proc_path:C:/projects"

Specified path names are put first in the list of directories that are searched for external procedures and
libraries. Separate multiple directories by the system-dependent separator (“;” on Windows and “:” on
Linux). This is a temporary setting for the current session only. See also section 5.4 on page 45.

• Open the protected program secret.hdev for editing (password: crypt):

hdevelop -unlock:crypt secret.hdev

• Convert the old procedure example.dvp to the default procedure format:

hdevelop -convert example.dvp example.hdvp

• Convert the procedure example.hdvp for use in older versions of HDevelop:

C
om

m
an

d
Li

ne

324 Command Line Usage

hdevelop -convert example.hdvp example.dvp

• Convert the protected procedure secret.hdvp (password: crypt) to an unprotected procedure:

hdevelop -unprotect:crypt -convert secret.hdvp nosecret.hdvp

• Protect the procedure example.hdvp with the password crypt:

hdevelop -protect:crypt -convert example.hdvp example.hdvp

• Export the program example.hdev and all used procedures to C++:

hdevelop -convert example.hdev example.cpp

Command Line Options

HDevelop accepts the following command line switches:

hdevelop [options]

HDevelop options:

<program>.{hdev,dev}

load the program for editing, converting, or running

{<procedure_file>,<procedure_library_file>}

load the procedure or procedure library for editing

-{protect,unprotect,unlock}:<password>

modify the protection state of an HDevelop program or

procedure

-load_recent_prog load the recent program irrespective of the appropriate

option that was selected in the preferences dialog

-load_no_prog do not load the recent program irrespective of the

appropriate option that was selected in the preferences

dialog

-run start execution of the passed program

<image_file> load an image file with read_image

-help show this help info in a message box

--help show this help information on the console

-version show version information in a message box

--version show version information on the console

-external_proc_path:<external procedure path(s)>

an external procedure path may point either to a directory

or a procedure library file

multiple external procedure paths are separated by semicolons

on windows systems, or by colons on all other systems

-convert <source> <destination> [<options>]

convert an HDevelop program or procedure into a

file of the specified type

(not possible combinations:

convert dev, hdev, hdpl into dvp, hdvp

convert dev, hdev, dvp, hdvp into hdpl)

source: <src_file>.{hdev,dev}

<src_file>.{hdvp,dvp}

<src_file>.{hdpl}

destination: dest_file.<type>

<type> write to <src_file>.<type>

- <type> write to stdout

type: hdev,dev HDevelop program

hdvp,dvp HDevelop procedure

hdpl HDevelop procedure library

c,cpp C, C++

C.1 HDevelop 325

cs,vb C#, VisualBasic.NET

txt text

options: [-external_procs_only_interfaces]

export only the interface(s) of the procedures

(the declarations) without the bodies

[-no_export_of_referred_procs]

export only the passed program or procedure but

do not include any referred external procedures

[-no_msg_box]

suppress error messages

[-reset_free_text]

reset free text formating

[-delete_local_procs]

[-delete_unused_local_procs]

[-no_use_hdevelop_template]

[-encoding native]

exported string constants are encoded in native

local-8-bit encoding instead of UTF-8

[-encoding UTF-8]

exported string constants are encoded in UTF-8 (default)

Please note that non-ASCII characters in string constants

are exported as octal codes in order to guarantee that

the strings are correctly created on all systems,

independent on any compiler settings

-reset_preferences

reset all persistent settings from previous sessions

-add_preferences <file>

start HDevelop with additional preferences

from a file

(replaces -preferences <file> that became deprecated)

-load_preferences <file>

reset all persistent settings and

start HDevelop with the preferences from a file

-use_preferences <file>

start HDevelop with the preferences from file

and store all modified preferences to file

-override_stop <time>

override stop() operator with wait_seconds(time)

-override_wait <time>

replace time of wait_seconds() operator with <time>

Export library project options:

-export_project

Export a library project

-export_type <type>

Type of project. Currently supported:

cmake

-input_file <file>

*.hdev or *.hdpl file used as project source

-project_name <name>

Name of exported project

(must be a valid identifier in the target language)

-output_folder <path>

Target path for exported files

-encoding <encoding>

Set output encoding. Currently supported:

native

UTF-8

-namespace <name>

C
om

m
an

d
Li

ne

326 Command Line Usage

Namespace of project

(must be a valid identifier in the target language)

-language <language>

Set source code language. Currently supported:

cpp

cs

GUI options:

-style[=] <style>

sets the application GUI style. Possible values are:

Windows Motif CDE Plastique Cleanlooks

X11 options:

-display <display>

sets the X display (default is $DISPLAY).

-geometry <geometry>

sets the client geometry of the first window that is shown.

-graphicssystem {native|raster|opengl}

sets the graphics backend used (default: native).

-{fn|font}

defines the application font. The font should be specified

using an X logical font description.

-{bg|background} <color>

sets the default background color and an application palette

(light and dark shades are calculated).

-{fg|foreground} <color>

sets the default foreground color.

-{btn|button} <color>

sets the default button color.

-name <name> sets the application name.

-title <app_title> sets the application title.

-visual TrueColor forces the application to use a TrueColor visual on an

8-bit display.

-ncols <count> limits the number of colors allocated in the color cube on

an 8-bit display if the application is using the

QApplication::ManyColor color specification. If count is 216

then a 6x6x6 color cube is used (i.e., 6 levels of red,

6 of green, and 6 of blue); for other values, a cube

approximately proportional to a 2x3x1cube is used.

-cmap causes the application to install a private color map on an

8-bit display.

C.2 Hrun

Hrun is a command line utility to run HDevelop scripts.

This is especially useful if there is no HDevelop installed on your system, for example, on embedded systems.

Hrun understands many command line switches when started from a console or terminal window. Run the follow-
ing command to get a list of all supported command line switches:

hrun --help

In general, Hrun is started using

hrun [OPTIONS] [FILE]

D.2 Graphics Window 327

Appendix D

Keyboard Shortcuts

The following sections list the keyboard shortcuts supported in HDevelop.

D.1 Canvas Window

Function Shortcut Alternative

Increase Zoom Factor
�� ��Ctrl+Shift++

Decrease Zoom Factor
�� ��Ctrl+Shift+-

D.2 Graphics Window

Function Shortcut Alternative

Delete
�� ��Del

Increase Zoom Factor
�� ��Ctrl++

Decrease Zoom Factor
�� ��Ctrl+-

Clear
�� ��c

�� ��Shift+c

Select Mode
�� ��s

�� ��Shift+s

Move Mode
�� ��m

�� ��Shift+m

Magnify Mode
�� ��z

�� ��Shift+z

Zoom In Mode
�� ��+

Zoom Out Mode
�� ��-

Draw ROI
�� ��r

�� ��Shift+r

3D Mode
�� ��3

Show Axes
�� ��x

�� ��Shift+x

Show Grid
�� ��g

�� ��Shift+g

Activate
�� ��a

�� ��Shift+a

Close Graphics Window
�� ��Ctrl+Shift+G,Q

�� ��Ctrl+Shift+G,Ctrl+Shift+Q

400 %
�� ��Ctrl+Shift+G,4

�� ��Ctrl+Shift+G,Ctrl+Shift+4

200 %
�� ��Ctrl+Shift+G,2

�� ��Ctrl+Shift+G,Ctrl+Shift+2

100 %
�� ��Ctrl+Shift+G,1

�� ��Ctrl+Shift+G,Ctrl+Shift+1

K
ey

bo
ar

d
S

ho
rt

cu
ts

328 Keyboard Shortcuts

Function Shortcut Alternative

50 %
�� ��Ctrl+Shift+G,5

�� ��Ctrl+Shift+G,Ctrl+Shift+5

Double
�� ��Ctrl+Shift+G,+

�� ��Ctrl+Shift+G,Ctrl+Shift++

Half
�� ��Ctrl+Shift+G,-

�� ��Ctrl+Shift+G,Ctrl+Shift+-

Aspect
�� ��Ctrl+Shift+G,=

�� ��Ctrl+Shift+G,Ctrl+Shift+=

Fit
�� ��Ctrl+Shift+G,Home

�� ��Ctrl+Shift+G,Ctrl+Shift+Home

Double
�� ��Ctrl+Shift+G,Right

�� ��Ctrl+Shift+G,Ctrl+Shift+Right

Half
�� ��Ctrl+Shift+G,Left

�� ��Ctrl+Shift+G,Ctrl+Shift+Left

Aspect
�� ��Ctrl+Shift+G,.

�� ��Ctrl+Shift+G,Ctrl+Shift+.

D.3 Help Window

Function Shortcut Alternative

Locate page
�� ��Ctrl+L

Back
�� ��Alt+Left

Forward
�� ��Alt+Right

Home
�� ��Alt+Home

Increase Zoom Factor
�� ��Ctrl++

Decrease Zoom Factor
�� ��Ctrl+-

Reset to normal size
�� ��Ctrl+0

Bookmark
�� ��Ctrl+D

Print Page
�� ��Ctrl+P

Insert
�� ��Alt+Return

�� ��Alt+Enter

Find:
�� ��Ctrl+F

Next
�� ��Down

Previous
�� ��Up

D.4 HDevelop Main Window

Function Shortcut Alternative

New Program
�� ��Ctrl+N

Open Program...
�� ��Ctrl+O

Save
�� ��Ctrl+S

Save Program As...
�� ��Ctrl+Shift+S

Save All
�� ��Ctrl+Alt+S

Print Page
�� ��Ctrl+P

Quit
�� ��Ctrl+Q

Undo
�� ��Ctrl+Z

Redo
�� ��Ctrl+Y

D.4 HDevelop Main Window 329

Function Shortcut Alternative

Cut
�� ��Ctrl+X

�� ��Shift+Del

Copy
�� ��Ctrl+C

�� ��Ctrl+Ins

Paste
�� ��Ctrl+V

�� ��Shift+Ins

Delete
�� ��Del

Activate
�� ��F3

Deactivate
�� ��F4

Find:
�� ��Ctrl+F

Find Again
�� ��Ctrl+G

Reset Program Execution
�� ��F2

Reset Procedure Execution
�� ��Shift+F2

Run
�� ��F5

Run To Insert Cursor
�� ��Shift+F5

Step Over
�� ��F6

Step Forward
�� ��Shift+F6

Step Into
�� ��F7

Step Out
�� ��F8

Abort Procedure Execution
�� ��Shift+F8

Stop
�� ��F9

Stop After Procedure
�� ��Shift+F9

Set Breakpoint
�� ��F10

Activate/Deactivate Breakpoint
�� ��Shift+F10

Next Bookmark
�� ��F11

Previous Bookmark
�� ��Shift+F11

Set Bookmark
�� ��Ctrl+F11

Activate Profiling
�� ��Ctrl+Shift+F,F

�� ��Ctrl+Shift+F,Ctrl+Shift+F

Number of Calls
�� ��Ctrl+Shift+F,N

�� ��Ctrl+Shift+F,Ctrl+Shift+N

Total Execution Time
�� ��Ctrl+Shift+F,L

�� ��Ctrl+Shift+F,Ctrl+Shift+L

Average Execution Time
�� ��Ctrl+Shift+F,A

�� ��Ctrl+Shift+F,Ctrl+Shift+A

Minimum Execution Time
�� ��Ctrl+Shift+F,I

�� ��Ctrl+Shift+F,Ctrl+Shift+I

Maximum Execution Time
�� ��Ctrl+Shift+F,X

�� ��Ctrl+Shift+F,Ctrl+Shift+X

Last Execution Time
�� ��Ctrl+Shift+F,M

�� ��Ctrl+Shift+F,Ctrl+Shift+M

Execution Time
�� ��Ctrl+Shift+F,E

�� ��Ctrl+Shift+F,Ctrl+Shift+E

Operator Time
�� ��Ctrl+Shift+F,O

�� ��Ctrl+Shift+F,Ctrl+Shift+O

Time
�� ��Ctrl+Shift+F,T

�� ��Ctrl+Shift+F,Ctrl+Shift+T

Percentage
�� ��Ctrl+Shift+F,P

�� ��Ctrl+Shift+F,Ctrl+Shift+P

Reset Profiler
�� ��Ctrl+Shift+F,R

�� ��Ctrl+Shift+F,Ctrl+Shift+R

Show Runtime Statistics
�� ��Ctrl+Shift+F,S

�� ��Ctrl+Shift+F,Ctrl+Shift+S

Activate/Deactivate display
�� ��Ctrl+Shift+F,V

�� ��Ctrl+Shift+F,Ctrl+Shift+V

Activate only selected
�� ��Ctrl+Shift+F,Y

�� ��Ctrl+Shift+F,Ctrl+Shift+Y

K
ey

bo
ar

d
S

ho
rt

cu
ts

330 Keyboard Shortcuts

Function Shortcut Alternative

Set Parameters
�� ��Ctrl+Shift+G,P

�� ��Ctrl+Shift+G,Ctrl+Shift+P

Open Graphics Window...
�� ��Ctrl+Shift+G,O

�� ��Ctrl+Shift+G,Ctrl+Shift+O

Clear Graphics Window
�� ��Ctrl+Shift+G,Del

�� ��Ctrl+Shift+G,Ctrl+Shift+Del

Close Graphics Window
�� ��Ctrl+Shift+G,Q

�� ��Ctrl+Shift+G,Ctrl+Shift+Q

Save Window...
�� ��Ctrl+Shift+G,S

�� ��Ctrl+Shift+G,Ctrl+Shift+S

Insert Code...
�� ��Ctrl+Shift+G,I

�� ��Ctrl+Shift+G,Ctrl+Shift+I

Record Interactions
�� ��Ctrl+I

400 %
�� ��Ctrl+Shift+G,4

�� ��Ctrl+Shift+G,Ctrl+Shift+4

200 %
�� ��Ctrl+Shift+G,2

�� ��Ctrl+Shift+G,Ctrl+Shift+2

100 %
�� ��Ctrl+Shift+G,1

�� ��Ctrl+Shift+G,Ctrl+Shift+1

50 %
�� ��Ctrl+Shift+G,5

�� ��Ctrl+Shift+G,Ctrl+Shift+5

Double
�� ��Ctrl+Shift+G,+

�� ��Ctrl+Shift+G,Ctrl+Shift++

Half
�� ��Ctrl+Shift+G,-

�� ��Ctrl+Shift+G,Ctrl+Shift+-

Aspect
�� ��Ctrl+Shift+G,=

�� ��Ctrl+Shift+G,Ctrl+Shift+=

Fit
�� ��Ctrl+Shift+G,Home

�� ��Ctrl+Shift+G,Ctrl+Shift+Home

Double
�� ��Ctrl+Shift+G,Right

�� ��Ctrl+Shift+G,Ctrl+Shift+Right

Half
�� ��Ctrl+Shift+G,Left

�� ��Ctrl+Shift+G,Ctrl+Shift+Left

Aspect
�� ��Ctrl+Shift+G,.

�� ��Ctrl+Shift+G,Ctrl+Shift+.

Save Procedure As...
�� ��Ctrl+Shift+P,S

�� ��Ctrl+Shift+P,Ctrl+Shift+S

Create New Procedure
�� ��Ctrl+Shift+P,C

�� ��Ctrl+Shift+P,Ctrl+Shift+C

Edit Procedure Interface
�� ��Ctrl+Shift+P,I

�� ��Ctrl+Shift+P,Ctrl+Shift+I

Delete Current
�� ��Ctrl+Shift+P,Del

�� ��Ctrl+Shift+P,Ctrl+Shift+Del

Browse HDevelop Example

Programs...

�� ��Ctrl+E

Read Image...
�� ��Ctrl+R

Preferences
�� ��Ctrl+Shift+O,S

�� ��Ctrl+Shift+O,Ctrl+Shift+S

Open Graphics Window
�� ��Ctrl+Shift+O,G

�� ��Ctrl+Shift+O,Ctrl+Shift+G

Open Program Window
�� ��Ctrl+Shift+O,P

�� ��Ctrl+Shift+O,Ctrl+Shift+P

Open Variable Window
�� ��Ctrl+Shift+O,V

�� ��Ctrl+Shift+O,Ctrl+Shift+V

Open Operator Window
�� ��Ctrl+Shift+O,O

�� ��Ctrl+Shift+O,Ctrl+Shift+O

Gray Histogram
�� ��Ctrl+Shift+O,H

�� ��Ctrl+Shift+O,Ctrl+Shift+H

Feature Histogram
�� ��Ctrl+Shift+O,F

�� ��Ctrl+Shift+O,Ctrl+Shift+F

Feature Inspection
�� ��Ctrl+Shift+O,I

�� ��Ctrl+Shift+O,Ctrl+Shift+I

Line Profile
�� ��Ctrl+Shift+O,L

�� ��Ctrl+Shift+O,Ctrl+Shift+L

Thread View / Call Stack
�� ��Ctrl+Shift+O,C

�� ��Ctrl+Shift+O,Ctrl+Shift+C

Zoom Window
�� ��Ctrl+Shift+O,Z

�� ��Ctrl+Shift+O,Ctrl+Shift+Z

OCR Training File Browser
�� ��Ctrl+Shift+O,T

�� ��Ctrl+Shift+O,Ctrl+Shift+T

Export
�� ��Ctrl+Shift+O,X

�� ��Ctrl+Shift+O,Ctrl+Shift+X

Open Output Console
�� ��Ctrl+Shift+O,E

�� ��Ctrl+Shift+O,Ctrl+Shift+E

D.5 OCR Training File Browser 331

Function Shortcut Alternative

Open Quick Navigation
�� ��Ctrl+Shift+O,R

�� ��Ctrl+Shift+O,Ctrl+Shift+R

Manage Breakpoints
�� ��Ctrl+Shift+O,F10

�� ��Ctrl+Shift+O,Ctrl+Shift+F10

Manage Bookmarks
�� ��Ctrl+Shift+O,F11

�� ��Ctrl+Shift+O,Ctrl+Shift+F11

Invalid Lines
�� ��Ctrl+Shift+O,F12

�� ��Ctrl+Shift+O,Ctrl+Shift+F12

Full Screen
�� ��Ctrl+Shift+W,F

�� ��Ctrl+Shift+W,Ctrl+Shift+F

Next Window
�� ��Ctrl+Tab

�� ��Ctrl+>

Previous Window
�� ��Ctrl+Shift+Tab

�� ��Ctrl+<

Help
�� ��F1

Context Help
�� ��Shift+F1

Start Dialog
�� ��Ctrl+Shift+H,S

�� ��Ctrl+Shift+H,Ctrl+Shift+S

About
�� ��Ctrl+Shift+H,A

�� ��Ctrl+Shift+H,Ctrl+Shift+A

Keywords
�� ��Ctrl+Shift+H,K

�� ��Ctrl+Shift+H,Ctrl+Shift+K

HALCON News (WWW)
�� ��Ctrl+Shift+H,W

�� ��Ctrl+Shift+H,Ctrl+Shift+W

Search Documentation
�� ��Ctrl+Shift+H,F

�� ��Ctrl+Shift+H,Ctrl+Shift+F

HDevelop Language
�� ��Ctrl+Shift+H,L

�� ��Ctrl+Shift+H,Ctrl+Shift+L

HALCON Reference
�� ��Ctrl+Shift+H,R

�� ��Ctrl+Shift+H,Ctrl+Shift+R

HDevelop User’s Guide
�� ��Ctrl+Shift+H,U

�� ��Ctrl+Shift+H,Ctrl+Shift+U

D.5 OCR Training File Browser

Function Shortcut Alternative

New Training File
�� ��Ctrl+N

Load Training File...
�� ��Ctrl+O,T

�� ��Ctrl+O,Ctrl+T

Save Training File
�� ��Ctrl+S

Close Training File
�� ��Ctrl+L

Save All Training Files
�� ��Ctrl+Alt+S

Close All Training Files
�� ��Ctrl+Alt+L

Save Training File As...
�� ��Ctrl+Shift+S

Load OCR Classifier...
�� ��Ctrl+O,C

�� ��Ctrl+O,Ctrl+C

Undo
�� ��Ctrl+Z

Redo
�� ��Ctrl+Y

Cut
�� ��Ctrl+X

�� ��Shift+Del

Copy
�� ��Ctrl+C

�� ��Ctrl+Ins

Paste
�� ��Ctrl+V

�� ��Shift+Ins

Delete
�� ��Del

Add Symbol Name
�� ��Ctrl+E,N

�� ��Ctrl+E,Ctrl+N

Generate Variations...
�� ��Ctrl+E,V

�� ��Ctrl+E,Ctrl+V

Add Samples From A System

Font...

�� ��Ctrl+E,F
�� ��Ctrl+E,Ctrl+F

K
ey

bo
ar

d
S

ho
rt

cu
ts

332 Keyboard Shortcuts

Function Shortcut Alternative

Detailed View
�� ��Ctrl+Shift+V,D

�� ��Ctrl+Shift+V,Ctrl+Shift+D

Thumbnails
�� ��Ctrl+Shift+V,T

�� ��Ctrl+Shift+V,Ctrl+Shift+T

D.6 Plot Windows

Function Shortcut Alternative

Zoom In
�� ��+

�� ��Ctrl+Shift++

Zoom Out
�� ��-

�� ��Ctrl+Shift+-

Fit Data Range
�� ��d

�� ��Ctrl+Shift+D

Zoom To Selection
�� ��s

�� ��Ctrl+Shift+S

Reset Bounds
�� ��r

�� ��Ctrl+Shift+R

Enter Bounds...
�� ��b

�� ��Ctrl+Shift+B

Show Mouse Position
�� ��p

�� ��Ctrl+Shift+P

Show Function Value At X
�� ��x

�� ��Ctrl+Shift+X

Show Function Value At Y
�� ��y

�� ��Ctrl+Shift+Y

Show Background Grid
�� ��g

�� ��Ctrl+Shift+G

Reset Bounds
�� ��w

�� ��Ctrl+Shift+W

Reset Bounds
�� ��h

�� ��Ctrl+Shift+H

Left
�� ��Shift+Left

�� ��Shift+4

Right
�� ��Shift+Right

�� ��Shift+6

Up
�� ��Shift+Up

�� ��Shift+8

Down
�� ��Shift+Down

�� ��Shift+2

D.7 Program Window

Function Shortcut Alternative

Run Until Here
�� ��Shift+F5

Set Insert Cursor
�� ��Ctrl+.

Set Program Counter
�� ��Ctrl+,

Show Procedure
�� ��Alt+Return

�� ��Alt+Enter

Show Procedure in New Tab
�� ��Alt+Ctrl+Return

�� ��Alt+Ctrl+Enter

Show Procedure in New Window
�� ��Alt+Shift+Return

�� ��Alt+Shift+Enter

Auto Indent
�� ��Ctrl+Shift+I

PC Up
�� ��Ctrl+Up

PC Down
�� ��Ctrl+Down

Open Operator Window
�� ��Ctrl+Shift+Space

Execute Current Line
�� ��Ctrl+Return

�� ��Ctrl+Enter

Go to Line
�� ��Alt+G

D.8 Variable Inspect 333

Function Shortcut Alternative

Go to Program Counter
�� ��Alt+,

Show main
�� ��Alt+Home

Show Next Tab Card
�� ��Alt+Right

Show Previous Tab Card
�� ��Alt+Left

Select a Procedure
�� ��Alt+Up

Move tab to the left
�� ��Ctrl+Alt+Shift+Left

Move tab to the right
�� ��Ctrl+Alt+Shift+Right

Incremment text size
�� ��Ctrl++

Decremment text size
�� ��Ctrl+-

Set Breakpoint
�� ��F10

Activate/Deactivate Breakpoint
�� ��Shift+F10

Set Bookmark
�� ��Ctrl+F11

Back in History
�� ��Alt+Shift+Left

Forward in History
�� ��Alt+Shift+Right

New Tab
�� ��Alt+Ins

List Open Tabs
�� ��Alt+Down

D.8 Variable Inspect

Function Shortcut Alternative

Cut
�� ��Ctrl+X

�� ��Shift+Del

Copy
�� ��Ctrl+C

�� ��Ctrl+Ins

Paste
�� ��Ctrl+V

�� ��Shift+Ins

Delete
�� ��Del

Insert
�� ��Ctrl+Shift+V

K
ey

bo
ar

d
S

ho
rt

cu
ts

334 Keyboard Shortcuts

Index 335

Index

* (asterisk)
external procedure, 53
in window title, 32

.NET, 309, 311

.avi, 27

.dev, 44

.dvp, 44

.hdev, 44

.hdpl, 45

.hdvp, 44

.seq, 27
#, 314
#$, 314
#$$, 314
#ˆ, 314
#ˆˆ, 314
$, 260

Abort Procedure Execution, 56
About, 64
Acquisition

menu (Image Acquisition Assistant), 183
Snap, 180

Acquisition menu
Live, 180

Acquisition Mode, 183
actionUpdateWin, 58
Activate, 54, 64, 133
Activate Profiler, 56, 64
Activate/Deactivate Breakpoint, 56, 133
Activate/Deactivate Breakpoint on

Variable, 134, 163, 165
Adapt program, 138
Adaptive Range, 97, 172
Add to User Tab, 163, 165
Add Variable, 164, 166
Add Watch, 134
Advanced, 142
advanced autocompletion, 129
advanced fuzzy features, 227
advanced measuring tasks, 224, 234
advanced model parameters, 206
advanced search parameters, 216
advanced training parameters, 238
alignment, 228
All, 161
Alternatives, 61
Always Find, 206, 214
Angle Extent, 210
Angle Step, 212
Apply Changes Immediately, 58

assistant
Close Dialog, 179
Delete Generated Code Lines, 179
Exit Assistant, 179
image acquisition, 25
Insert Code for Selection, 179
Load Assistant Settings..., 179
Release Generated Code Lines, 179
Save Current Assistant Settings...,

179
Show Code Preview, 179

assistant settings, display, 204
assistant settings, load, 199, 204
assistant settings, save, 199, 204
Assistants

menu, 62
Attach To Process..., 56
Attention, 142
Auto, 161
Auto Disconnect, 183
Auto Indent, 133
Auto-detect Interfaces, 180
Autocompletion, 112
autocompletion, 129
AVI, 27

Back, 84
Back in History, 126
basic features, 237
Bit Depth, 181
Bookmark, 84
Bookmarks, 154
boolean, 248, 319

operations, 267
breakpoint, 17

activate/deactivate, 56
clear all, 56
manage, 56
on variable, 161
set, 56

Bring Main Window To Front, 63
Bring Others To Front, 63
Browse HDevelop Example Programs..., 53,

64, 69

C, 11, 313
C export, 313
C++, 11

compile and link (Linux), 308, 313
compile and link (Windows), 308, 313

C++ export, 307

In
de

x

336 Index

C#, 11
C# export, 309
Calibrate, 199
calibration plate, 186
calibration plate extraction parameters, 194
calibration source, 210, 223
calibration task, 186
camera parameters, 186
camera parameters, load, 204
camera pose, load, 204
Camera Type, 180
Canvas Options, 63, 66
canvas window, 17, 66
Cascade Floating Windows, 63
catch, 282
Category, 182
channel

gray value, 58, 176
channel number, 177
channel selection

gray histogram, 102
Chapters, 142
check box Always Find, 214
Check For Updates, 64
Clear / Display, 163
Clear All Breakpoints, 56
Clear Graphics Window, 58
Clear Variable, 163, 165
Close All Procedures, 53
Close Assistant, 199, 204
Close Dialog, 179, 229, 243
Close Graphics Window, 58
Close Procedure, 53
Code Generation, 199, 204, 207, 218, 223, 229,

241, 243, 303, 307
File, 26
Image Acquisition Assistant, 182
image acquisition interface, 29

Code Generation, preview, 200, 207, 230, 244
code lines, delete, 200, 207, 230, 244
code lines, insert, 199, 207, 229, 243
code lines, release, 200, 207, 229, 244
code options, 207
Code Preview, 182, 224, 242
code variables, 207
Color, 56, 102, 173
Color Space, 181
Colored, 56
Colors, 114
column, 65
Column Scale Step, 212
comment

#, 314
#$, 314
#$$, 314
#ˆ, 314
#ˆˆ, 314

comparison
operations, 265

compilation of procedures, 48
Complexity, 143
Connect, 181
Connection, 102

Image Acquisition Assistant, 180
Connection Handle, 183
constants

numeric, 250
constants, 249
Context Help, 64
continuation

line, 129
Contrast, 210
Control, 60
control data, 319
Control Flow, 183
control flow

break, 280
continue, 280
elseif, 279
exit, 281
for ... endfor, 279
if ... else ... endif, 277
if ... endif, 277
operators, 276
repeat ... until, 279
return, 281
stop, 281
throw, 282
try ... catch ... endtry, 282
while ... endwhile, 279

coordinates
status bar, 65

Copy, 54, 133, 165
Copy History to Clipboard, 65
Create Model, 208
create model, 203
Create New Procedure, 133
create new procedure, 59
Create ROI, 220, 233
Cut, 54, 133

Deactivate, 54, 64, 133
debugging

remote, 299
Declared in, 163, 165
Decrease Zoom Factor, 84
Delete, 54, 133
Delete All ROIs, 229, 243
Delete All Unused Local, 59
Delete Current, 59
Delete Generated Code Lines, 179, 200, 207,

230, 244
Delete Selected ROI, 243
Descriptor Min. Score, 216
Detailed Description, 142
Detect, 27, 181
Detect All, 214
Detector Type, 210
determine pose bounds, 218

Index 337

Determine Recognition Rate, 218
dev_ operators, 60
dev_display, 316
dev_open_window, 316
dev_set_check, 282
dev_set_part, 316
Develop, 60
Device, 180
dict, see dictionary
dictionary, 273
Dim +, 138
Dim -, 138
Disabled, 182
Disconnect, 181
Display, 58, 163
Display Axes, 80
Display Channel, 163
Display Content:, 163
Display Grid, 80
Display Image, 182
Display Image Pyramid, 209
Display Image Pyramid Level, 204
display parameters, 194, 222, 241
Display Selected Test Image, 206, 214
Draw, 56, 102
Draw Axis-aligned Rectangle, 243
Draw Circular Arc, 229
Draw Line, 229
Draw Rotated Rectangle, 243
Draw1, 158
Duplicate..., 59

EasyParams, 29
edge data, 223
edge selection, 222
Edit menu, 54

Activate, 54
Copy, 54
Cut, 54
Deactivate, 54
Delete, 54
Find Again, 54
Find/Replace..., 54
Invalid Lines, 54
Manage Bookmarks, 54
Next Bookmark, 54
Paste, 54
Preferences, 54
Previous Bookmark, 54
Redo, 54
Set/Clear Bookmark, 54
Undo, 54

Edit Procedure, 59
Edit Procedure Interface, 59, 127
else, 277
Emergency backup, 297
Enable the context menu in the Graphics

window, 125
Enable the mouse wheel in the Graphics

window, 125

Enable tooltip showing coordinates and

gray value at the mouse cursor

position in the Graphics window,
125

encoding, 71
native, 71, 121
UTF-8, 71, 121

endfor, 279
endif, 277
Ending Angle, 215
endtry, 282
endwhile, 279
Enter Bounds..., 98, 173
error handling, 282
escape

strings, 248
Example, 142
example programs, 53
exception

handling, 283
throw directly, 122

Exception handling, 309, 311, 312
executable expression, 272
Execute

Activate/Deactivate Breakpoint, 56
Attach To Process..., 56
menu, 55
Stop Debugging, 56

Execute Current Line, 127
Execute menu

Abort Procedure Execution, 56
Activate Profiler, 56
Clear All Breakpoints, 56
Clear Breakpoint, 56
Manage Breakpoints, 56
Reset Procedure Execution, 56
Reset Profiler, 56
Reset Program Execution, 56, 251
Run, 56
Run To Insert Cursor, 56
Set Breakpoint, 56
Show Runtime Statistics, 56
Step Forward, 56
Step Into, 56
Step Out, 56
Step Over, 56
Stop, 56
Thread View / Call Stack, 56

Exit Assistant, 179, 199, 204, 229, 243
expected gray value range, 224
exponential

functions, 268
Export, 111
Export Library Project..., 303
Export Program..., 69
Export...

UTF-8 encoding, 71
external procedure, modified, 53
extract edges, 221

In
de

x

338 Index

false, 319
Feature Histogram, 58, 64
Feature Inspection, 58, 64
feature processing, 223
feature selection, 222, 240
Fern Depth, 210
Fern Number, 210
Field, 181
File, 27, 156, 199, 204, 228, 242

menu, 52
File menu

Browse HDevelop Example Programs...,
53

Close All Procedures, 53
Close Procedure, 53
Export Library Project..., 53
Export Program..., 53
New Program, 53
Open Procedure For Editing..., 53
Open Program..., 53
Print..., 53
Properties, 53
Quit, 53
Read Image..., 53
Recent Programs, 53
Save, 53
Save All, 53
Save Procedure As..., 53
Save Program As..., 53

file types, 44
Find, 54, 71, 84, 153
Find Again, 54
Find Model, 214
Find Variable, 163, 165
Find/Replace..., 64
Fit Data Range, 101, 107
Fit Graph, 173
Font, 112
for

loop, 279
for, 319
Forward, 84
Forward in History, 126
frames per second

Image Acquisition Assistant, 182
Full Screen, 63
fuzzy has:match:ref:tparam:standard, 226
fuzzy edge position, 226
fuzzy measuring, 225
fuzzy pair center position, 226
fuzzy pair gray mean, 227
fuzzy pair width, 226

gen_tuple_const, 258
General Documentation, 141
General Settings, 140
Generic, 181
get_system, 315
Give Error, 124
Global, 161

global, 251
global variables, 251
Go to Line, 127
Go to Program Counter, 127
graphics window, 74, 315, 319

clear, 58
close, 58
colors, 58
image size, 58
line width, 58
open, 58
regions, 58
select iconic variable, 58
window size, 58

Gray Histogram, 58, 64
gray value

histogram, 58, 98
inspection, 58, 176
status bar, 65

Greediness, 216
Group, 141
Guided Matching, 216

HALCON
example programs, 53
modules, 110

HALCON News (WWW), 64
HALCON Reference, 64
HALCONIMAGES, 24, 180
HALCONROOT, 24, 180
handle, 249
HDevelop

dev_ operators, 60
example programs, 53
language, 247

HDevelop Language, 64
hdevelop program export, 307
HDevelop User’s Guide, 64
Help, 64, 127, 133

About, 64
Check For Updates, 64
Context Help, 64
HALCON News (WWW), 64
HALCON Reference, 64
HDevelop Language, 64
HDevelop User’s Guide, 64
menu, 64
Search Documentation, 64
Start Dialog, 64

Highlight Modified Variables, 113
Highlight Selection, 101
Home, 84
Hrun, 326

IC, 17, 126
iconic data, 319
iconic object, 319
if, 277, 319
ifelse, 277

Index 339

Ignore first image of live acquisition,
182

image, 319
Image Acquisition Assistant, 25, 64, 180

Code Generation, 182
Connection, 180
frames per second, 182
Inspect, 182
Parameters, 181
Source, 180

Image Acquisition Interface, 180
File, 27

image coordinates
status bar, 65

Image File(s), 180
Image Files, 183
Image Object, 183
image properties

status bar, 65
image pyramid, display, 209
Image Size, 58
image source, 188, 220, 233
Import, 111
In Single Step Mode, 58
Increase Zoom Factor, 84
Increasing Range, 97, 172
Indent Size, 112
Input Window, 100
Insert All As Local, 59
Insert Code, 183, 199, 207, 229, 243
Insert Code for Selection, 179
Insert Code..., 58
insert cursor, 17
Insert dev_display() into program, 163
Insert operator into program, 84
Insert Plot Code for Graphics Window, 98,

173
Insert Used As Local, 59
InsertCode, 101
Inspect, 165, 207

Image Acquisition Assistant, 182
Inspect as Handle, 165
Inspect as Tuple, 165, 173
inspection, 235
integer, 248
Interface Library, 181
Invalid Lines, 152

JIT compilation, 48
join, 264
Jump to Link, 84

Keep dialog open, 71
keyboard

menu access, 52
shortcuts, 327
usage, 13

Keywords, 61

LANG, 113

Language, 113, 141
Last Pyramid Level, 216
LC_ALL, 113
LC_COLLATE, 113
LC_CTYPE, 113
library project export, 303
line continuation, 129
Line Profile, 58, 64, 106
Line Width, 58, 102
Linear Scale, 97, 172
Linux, 308, 313
List Open Tabs, 127
Live, 27, 181
Load Assistant Settings, 199, 204, 228, 243
Load Assistant Settings..., 179
Load Camera Parameters, 204, 228
Load Camera Pose, 204
Load Image, 228, 242
Load Model, 204
Load Model Image, 204
Load OCR Classifier, 242
Load ROI from File., 229, 243
Load Test Images, 206
Load Training File, 242
local variables, 251
Locate page, 84
Logarithmic Scale, 97, 172
look-up table, 58
loop

body, 319
Loop Counter, 183
Lut, 58

main procedure, 307, 308, 310, 311, 313
main window, 51
Make All External, 59
Manage Breakpoints, 56, 134
Manage Passwords, 118
Manage Procedures, 59
Max Deformation, 216
Max. Column Scale, 210
Max. Row Scale, 210
Maximum Number of Matches, 215
Maximum Overlap, 216
measure task, setup, 220
Measuring, 229
menu, 52

Acquisition (Image Acquisition Assistant),
183

Assistants, 62
Edit, 54
Execute, 55
File, 52
Help, 64
Operators, 60
Procedures, 59
Suggestions, 61
Visualization, 56
Window, 63

messages

In
de

x

340 Index

status bar, 65
method selection, 203
Metric, 212
Min. Angle and Max. Angle, 210
Min. Column Scale, 210
Min. Contrast, 212
Min. Row Scale, 210
Min. Scale and Max. Scale, 210
Min. Score, 210
Minimum Component Size, 210
Minimum Score, 215
Mode, 80
model creation, 203, 208
model image, load, 204
model parameters, advanced, 206
model parameters, standard, 206
model use parameters, advanced, 216
model use parameters, standard, 215
modified

external procedure, 53
Modify Model Image, 209
Modify Regions, 158
Move Down, 138
Move tab to the left, 127
Move tab to the right, 127
Move Up, 138

Name, 134
native encoding, 71, 121
New Program, 53, 64
New Tab, 126
New Training File, 242
New Zoom Window, 58
Next, 84
Next Bookmark, 54
Next Link, 84
No output, 101
Normal, 182
number of visible objects, 214
numeric constants, 250

OCR
classifier, 236
menu, 243
Training File Browser, 58, 64
training files, 58

Open Canvas Window, 63
Open Graphics Window, 63
Open Graphics Window..., 58
Open Operator Window, 63, 133
Open Output Console, 63, 65
Open Procedure For Editing..., 53
Open Program Window, 63
Open Program..., 53, 64
Open Quick Navigation, 63
open test images, 206
Open Variable Window, 63
operation

precedence, 270
Operations, 158

operator data base, 319
operator window, 90, 319
Operators

Control, 60
Develop, 60
Legacy, 60
menu, 60
submenus, 60
Unclassified, 60

Optimization, 308
Optimization, 212
optimize parameters, 203
Optimize Recognition Speed, 217
Output Console, 94
Output Window, 101

Paint, 58
parameter

expressions, 253
parameter Angle Extent, 210
parameter Angle Step, 212
parameter Column Scale Step, 212
parameter Contrast, 210
parameter Descriptor Min. Score, 216
parameter Detector Type, 210
Parameter Documentation, 144
parameter Ending Angle, 215
parameter Fern Depth, 210
parameter Fern Number, 210
parameter Greediness, 216
parameter Guided Matching, 216
parameter Last Pyramid Level, 216
parameter Max Deformation, 216
parameter Max. Column Scale, 210
parameter Max. Row Scale, 210
parameter Maximum Number of Matches, 215
parameter Maximum Overlap, 216
parameter Metric, 212
parameter Min. Angle and Max. Angle, 210
parameter Min. Column Scale, 210
parameter Min. Component Size, 210
parameter Min. Contrast, 212
parameter Min. Row Scale, 210
parameter Min. Score, 210
parameter Minimum Score, 215
parameter Optimization, 212
parameter optimization, 203
parameter Patch Size, 212
parameter Pyramid Levels, 210
parameter Row Scale Step, 212
parameter Score Type, 216
parameter Start Angle, 210
parameter Starting Angle, 215
parameter Subpixel, 216
parameter Tilt, 212
parameter Timeout, 216
Parameters

Image Acquisition Assistant, 181
parameters, 206, 210, 214
parameters Min. Scale and Max. Scale, 210

Index 341

Password, 134
Paste, 54, 133
Patch Size, 212
PC, 17, 126
PC Down, 127
PC Up, 127
Pin the program listing, 127
pixel

type, 177
pixel info, 58, 176
Plot as Function, 165
Plot as X/Y pair(s), 165
Plot Quality, 80
plot windows (interaction), 95
Port, 180
pose bounds, determine, 218
Position Precision, 58
Predecessors, 61
Preferences, 111
preferences

export, 111
import, 111

Preview Code, 224, 242
Previous, 84
Previous Bookmark, 54
Print..., 84, 110, 134
procedure, 307, 310, 311, 313
procedure compilation, 48
procedures, 43
Procedures menu

Create New Procedure, 59
Delete All Unused Local, 59
Delete Current, 59
Edit Procedure, 59
Edit Procedure Interface, 59
Insert All As Local, 59
Insert Used As Local, 59
Make All External, 59
Manage Procedures, 59

process features, 223
Profiler Display, 56
program counter, 17
Program Protection State:, 118
Program Window, 17, 319
program window, 126
Properties, 110
Pyramid Levels, 210
pyramid, display, 209

quality issues, 191
Quick Navigation, 151
quick setup, 232
Quit, 53

Read Image..., 24
real, 248
Recent Programs, 53
recognition rate, determine, 218
recognition speed, optimize, 217
Record Interactions, 57

Recursive, 180
Redo, 54, 64
reference to assistant elements, 198, 204, 228, 242
References, 143
Refresh, 152, 181
regexp_match, 264
regexp_replace, 264
regexp_select, 264
regexp_test, 265
region, 319

colors, 58
empty, 319
line width, 58

regions
visualization, 58

regular expressions, 264
relative file paths, 120
Release Generated Code Lines, 179, 200, 207,

229, 244
remote debugging, 299
Remove, 138, 173
Remove All Test Images, 206
Remove from User Tab, 164, 166
Remove Test Image, 206
repeat, 279
replace

Find/Replace..., 54, 71, 153
Replace selected program lines, 138
reserved words, 276
Reset, 111, 137
reset, 236

graphics window, 58
Reset All, 27, 181
Reset Bounds, 97, 98, 171–173
Reset Parameters, 58
Reset Procedure Execution, 56, 64
Reset Profiler, 56
Reset Program Execution, 56, 64
Reset to normal size, 84
Resolution, 181
Restore Default Layout Use, 63
Restrictions, 309, 310, 312
results, 241
results tab, 222, 240
ROI Type, 157
row, 65
Row Scale Step, 212
Run, 56, 64
Run To Insert Cursor, 56
Run Until Here, 132
runtime

status bar, 65

Save, 53, 64, 163, 165
Save All, 53, 64
Save Current Assistant Settings, 199, 204,

228, 243
Save Current Assistant Settings..., 179
Save Model, 204
Save Procedure As..., 53

In
de

x

342 Index

Save Program As..., 53
Save ROI to File, 229, 243
Save Training File, 243
Save Window..., 58
scale range, 210
Scale Selection, 101
scale step size, 212
scope (of variables), 251
Score Type, 216
Scroll down, 127
Scroll down page-wise, 127
Scroll up, 127
Scroll up page-wise, 127
Search Documentation, 64
search object, 214
search parameters, advanced, 216
search parameters, standard, 215
See also, 61
Select a Procedure, 127
Select Directory ..., 180
select edges, 222
select features, 222
Select File(s) ..., 180
Select Graphics Window, 76
select method, 203
select test image, 206, 214
Select..., 181
semantics, 247
sequence file, 27
set

operations, 265
up, 220

Set 1:1 Aspect Ratio, 172
Set 2D Calibration, 158
Set Insert Cursor, 127, 133
Set Parameters, 76
Set Program Counter, 127, 133
Set Reference, 214
Set/Clear Bookmark, 54, 133
Set/Clear Breakpoint, 56, 127, 133
Set/Clear Breakpoint on Variable, 133

control, 165
iconic, 163

set_system, 315
setup, 232
Shape, 58
shape model, load, 204
shape model, save, 204
Shape models may cross the image border,

216
check box Shape models may cross the image

border, 216
Short Description, 142
shortcuts, 13
Show Background Grid, 98, 173
Show Caller, 133
Show Code Preview, 179, 200, 207, 230, 244
Show frames per second during live

acquisition, 182

Show Function Value At X, 98, 173
Show Function Value At Y, 98, 173
Show main, 127
Show Min/Mean/Max, 182
Show Mouse Position, 98, 173
Show Next Tab Card, 126
Show Previous Tab Card, 126
Show Procedure, 133
Show Procedure in New Tab, 133
Show Procedure in New Window, 133
Show Processing Time, 65, 124
Show Runtime Statistics, 56
Snap, 27, 181
Sort by Name, 163, 165, 182
Sort by Occurrence, 163, 166
Source

Image Acquisition Assistant, 180
Source

image, 25
split, 263
standard model parameters, 206
standard search parameters, 215
Start Angle, 210
Start Dialog, 64
start dialog, 16
Starting Angle, 215
status bar, 65
Step, 80
Step Forward, 56
Step Into, 56, 64
Step Out, 56, 64
Step Over, 56, 64
Stop, 56, 64, 181
Stop Debugging, 56
str_firstn, 263
str_lastn, 263
strchr, 263
string, 248
string, 319

concatenation, 254, 263
operations, 260
special characters, 248

strlen, 263
strrchr, 263
strrstr, 263
strstr, 263
Style, 173
Subpixel, 216
Successors, 61
Suggestions, 142

Alternatives, 61
Keywords, 61
Predecessors, 61
See also, 61
Successors, 61

suppress error messages, 122
Swap (X, Y), 173
symbol appearance, 234
symbol fragmentation, 234

Index 343

symbol shape, 234
symbol size, 234
syntax, 247

tab results, 222, 240
teaching, 236
terminology, 12
test image sequence, remove, 206
test image, display, 206, 214
test image, remove, 206
test image, select, 206, 214
test image, set reference, 214
Test Images, 206
test images, load, 206
test model, 203, 206
text layout, 235
text orientation, 234
Themes, 114
Thickness, 173
Thread View / Call Stack, 56, 64, 159
throw, 282
Tilt, 212
Timeout, 216
To Object / To Tuple, 138
To Vector, 138
Tools, 58
Train Now, 243
training, 237
Trigger, 181
trigonometric

functions, 267
true, 319
try, 282
tuple, 250, 319

concatenation, 255, 256
Type, 134
type, 320

boolean, 319
integer, 319
real, 319
string, 319

Undo, 54, 64
Ungroup, 173
Unicode, 71
Unit, 158
until, 279
Update Graphics Window, 125
Update Image, 181
Update Program Counter, 124, 133
Update Variables, 124, 163, 166
Update Window, 58
Use Model, 206
User, 161
User-defined Range, 97, 172
UTF-8 encoding, 71, 121

variable names, 224, 242
variable types, 251
variable window, 17

variable window, 159, 320
tabs All, 161
tabs Auto, 161
tabs User, 161

variables, 251
view image pyramid, 209
view test image, 214
Visibility, 182
visible objects, 214
Visual Basic .NET, 11
Visual Basic .NET export, 311
Visualization

menu, 56
Record Interactions, 58

Visualization menu
Apply Changes Immediately, 58
Clear Graphics Window, 58
Close Graphics Window, 58
Color, 56
Colored, 58
Display, 58
Draw, 58
Feature Histogram, 58, 103
Feature Inspection, 58, 104
Gray Histogram, 58, 98
Image Size, 58
Insert Code..., 58
Line Profile, 58, 106
Line Width, 58
Lut, 58
New Zoom Window, 58
OCR Training File Browser, 58, 85
Open Graphics Window..., 58
Paint, 58
Position Precision, 58
Reset Parameters, 58
Save Window..., 58
Set Parameters, 58
Shape, 58
Update Window, 58
Window Size, 58
Zoom Window, 58, 176

Volatile, 182

Warning, 143
while

loop, 279
while, 319
Window

Cascade Floating Windows, 63
menu, 63
Open Graphics Window, 63
Open Operator Window, 63
Open Output Console, 63
Open Program Window, 63
Open Quick Navigation, 63
Open Variable Window, 63

Window Size, 58
Windows, 308, 313
word processing, 240

In
de

x

344 Index

X, 181
XLD, 320

colors, 58
line width, 58

Y, 181

Zoom, 176
Zoom in, 127
Zoom In Mode, 98, 173
Zoom out, 127
Zoom Out Mode, 98, 173
Zoom To Selection, 101, 107
Zoom Window, 58, 64, 176

	1 Introducing HDevelop
	1.1 Facts About HDevelop
	1.2 HDevelop XL
	1.3 Terminology & Usage

	2 Getting Started
	2.1 Running HDevelop
	2.2 Start Dialog
	2.3 User Interface
	2.4 Organizing HDevelop's Workspace
	2.5 Running Example Programs

	3 Acquiring Images With HDevelop
	3.1 Reading Images From Files
	3.2 Viewing Images
	3.3 Image Acquisition Assistant
	3.3.1 Acquiring Images From Files or Directories
	3.3.2 Acquiring Images Through Image Acquisition Interfaces
	3.3.3 Modifying the Generated Code

	4 Programming With HDevelop
	4.1 Starting a New Program
	4.2 Entering an Operator
	4.3 Specifying Parameters
	4.4 Getting Help
	4.5 Adding Program Lines
	4.6 Understanding the Image Display
	4.7 Inspecting Variables
	4.8 Improving the Threshold Using the Gray Histogram
	4.9 Editing Lines
	4.10 Executing a Program
	4.11 Saving a Program
	4.12 Selecting Regions Based on Features
	4.13 Opening the Graphics Window
	4.14 Looping Over the Results
	4.15 Summary

	5 HDevelop Procedures
	5.1 Procedure Types
	5.2 File Types
	5.2.1 File Tracking
	5.2.2 HDevelop Programs
	5.2.3 Procedure Files
	5.2.4 Libraries

	5.3 Procedure Scope
	5.4 Procedure Locations
	5.5 Procedure Resolution
	5.6 Protected Procedures
	5.7 Procedure Documentation
	5.8 Legacy Procedures
	5.9 Just-in-Time Compilation

	6 Graphical User Interface
	6.1 Menu
	6.1.1 Menu File
	6.1.2 Menu Edit
	6.1.3 Menu Execute
	6.1.4 Menu Visualization
	6.1.5 Menu Procedures
	6.1.6 Menu Operators
	6.1.7 Menu Suggestions
	6.1.8 Menu Assistants
	6.1.9 Menu Window
	6.1.10 Menu Help

	6.2 Tool Bar
	6.3 Status Bar
	6.4 Canvas Window
	6.4.1 Canvas Options
	6.4.2 Zooming
	6.4.3 Moving
	6.4.4 Resizing

	6.5 Browse Example Programs Dialog
	6.6 Export Program Dialog
	6.7 Find/Replace Dialog
	6.8 Graphics Window
	6.8.1 Tool Bar
	6.8.2 Visualization Parameters
	6.8.3 Context Menu
	6.8.4 3D Plot Mode
	6.8.5 Special Keyboard Shortcuts

	6.9 Help Window
	6.10 OCR Training File Browser
	6.10.1 Windows of the Training File Browser
	6.10.2 Steps for Working With the OCR Training File Browser
	6.10.3 Actions Within the Training File Browser

	6.11 Operator Window
	6.11.1 Operator Name Field
	6.11.2 Parameter Display
	6.11.3 Control Buttons

	6.12 Output Console Window
	6.13 Plot Windows
	6.13.1 Interacting With Plot Windows
	6.13.2 Gray Histogram Window
	6.13.3 Feature Histogram Window
	6.13.4 Feature Inspection Window
	6.13.5 Line Profile Window

	6.14 Properties Dialog
	6.15 Print Dialog
	6.16 Preferences Dialog
	6.16.1 User Interface Program Window
	6.16.2 User Interface Fonts
	6.16.3 User Interface Language
	6.16.4 User Interface Themes
	6.16.5 Procedures Directories
	6.16.6 Procedures External Procedures
	6.16.7 Procedures Manage Procedure Libraries
	6.16.8 Procedures Manage Passwords
	6.16.9 Procedures Procedure Use
	6.16.10 Procedures Unresolved Procedure Calls
	6.16.11 General Options General Options
	6.16.12 General Options Experienced User
	6.16.13 Visualization Settings
	6.16.14 Runtime Settings Runtime Settings
	6.16.15 Runtime Settings Override Operator Behavior
	6.16.16 Telemetry

	6.17 Program Window
	6.17.1 Program Window Actions
	6.17.2 Editing Programs
	6.17.3 Program Counter, Insert Cursor, and Breakpoints
	6.17.4 Context Menu
	6.17.5 Creating Procedures
	6.17.6 Editing Procedures
	6.17.7 Side Effects of Procedure Changes
	6.17.8 Providing Procedure Documentation
	6.17.9 Protecting a Procedure
	6.17.10 Profiler

	6.18 Quick Navigation Window
	6.18.1 Invalid Lines
	6.18.2 Find Results
	6.18.3 Breakpoints
	6.18.4 Bookmarks

	6.19 ROI Window
	6.20 Thread View / Call Stack
	6.21 Variable Window
	6.21.1 Breakpoints on Variables
	6.21.2 Managing Variables
	6.21.3 Iconic Variables
	6.21.4 Control Variables

	6.22 Variable Inspect
	6.22.1 Inspecting Tuples
	6.22.2 Inspecting Vectors
	6.22.3 Inspecting Handles
	6.22.4 Inspecting Matrices
	6.22.5 Inspecting Poses
	6.22.6 Inspecting Image Acquisition Device Handles
	6.22.7 Inspecting Functions
	6.22.8 Inspecting 3D Object Models

	6.23 Zoom Window

	7 HDevelop Assistants
	7.1 Image Acquisition Assistant
	7.1.1 Tab Source
	7.1.2 Tab Connection
	7.1.3 Tab Parameters
	7.1.4 Tab Inspect
	7.1.5 Tab Code Generation
	7.1.6 Menu Bar

	7.2 Calibration Assistant
	7.2.1 Introducing the Calibration Assistant of HDevelop
	7.2.2 How to Calibrate With the Calibration Assistant
	7.2.3 Results of the Calibration
	7.2.4 Generating Code
	7.2.5 Calibration Assistant Reference

	7.3 Matching Assistant
	7.3.1 Introducing the Matching Assistant of HDevelop
	7.3.2 How to Use the Matching Assistant of HDevelop
	7.3.3 Matching Assistant Reference

	7.4 Measure Assistant
	7.4.1 Introducing the Measure Assistant of HDevelop
	7.4.2 How to Use the Measure Assistant of HDevelop
	7.4.3 Results
	7.4.4 Code Generation
	7.4.5 Advanced Measuring Tasks
	7.4.6 Measure Assistant Reference

	7.5 OCR Assistant
	7.5.1 Introducing the OCR Assistant of HDevelop
	7.5.2 Setup
	7.5.3 Segmentation
	7.5.4 OCR Classifier
	7.5.5 Results
	7.5.6 Code Generation
	7.5.7 OCR Assistant Reference

	8 HDevelop Language
	8.1 Basic Types of Parameters
	8.2 Control Types and Constants
	8.3 Variables
	8.3.1 Variable Types
	8.3.2 Scope of Variables (local or global)

	8.4 Operations on Iconic Objects
	8.5 Expressions for Input Control Parameters
	8.5.1 General Features of Tuple Operations
	8.5.2 Assignment
	8.5.3 Basic Tuple Operations
	8.5.4 Tuple Creation
	8.5.5 Type Operations
	8.5.6 Basic Arithmetic Operations
	8.5.7 Bit Operations
	8.5.8 String Operations
	8.5.9 Set Operations
	8.5.10 Comparison Operations
	8.5.11 Elementwise Comparison Operations
	8.5.12 Boolean Operations
	8.5.13 Trigonometric Functions
	8.5.14 Exponential Functions
	8.5.15 Numerical Functions
	8.5.16 Miscellaneous Functions
	8.5.17 Operation Precedence

	8.6 Vectors
	8.7 Dictionaries
	8.8 Reserved Words
	8.9 Control Flow Operators
	8.10 Error Handling
	8.10.1 Tracking the Return Value of Operator Calls
	8.10.2 Exception Handling

	8.11 Parallel Execution
	8.11.1 Starting a Subthread
	8.11.2 Waiting for Subthreads to Finish
	8.11.3 Execution of Threads in HDevelop
	8.11.4 Inspecting Threads
	8.11.5 Suspending and Resuming Threads

	8.12 Summary of HDevelop Tuple Operations
	8.13 HDevelop Error Codes
	8.14 Emergency Backup

	9 Remote Debugging
	9.1 Requirements
	9.2 Attaching to an External Application
	9.3 Debugging
	9.4 Handling of Procedures
	9.5 Handling of Protected Procedures
	9.6 Error Handling
	9.7 Threading
	9.8 Terminating a Remote Debug Session
	9.9 Limitations

	10 Code Export
	10.1 Exporting Library Projects
	10.1.1 Requirements
	10.1.2 Project Preparation
	10.1.3 Exporting a Library Project
	10.1.4 Using the Exported Library Project

	10.2 Exporting Entire HDevelop Programs
	10.2.1 Code Generation for C++
	10.2.2 Code Generation for C# (HALCON/.NET)
	10.2.3 Code Generation for Visual Basic .NET (HALCON/.NET)
	10.2.4 Code Generation for C
	10.2.5 General Aspects of Code Generation

	A Glossary
	B Color Names
	C Command Line Usage
	C.1 HDevelop
	C.2 Hrun

	D Keyboard Shortcuts
	D.1 Canvas Window
	D.2 Graphics Window
	D.3 Help Window
	D.4 HDevelop Main Window
	D.5 OCR Training File Browser
	D.6 Plot Windows
	D.7 Program Window
	D.8 Variable Inspect

	Index

